Spaces:
Runtime error
Runtime error
File size: 162,906 Bytes
122057f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF general model utils."""
from __future__ import annotations
import functools
import gc
import inspect
import json
import os
import pickle
import re
import warnings
from collections.abc import Mapping
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
import h5py
import numpy as np
import tensorflow as tf
from huggingface_hub import Repository, list_repo_files
from keras import backend as K
from packaging.version import parse
from . import DataCollatorWithPadding, DefaultDataCollator
from .activations_tf import get_tf_activation
from .configuration_utils import PretrainedConfig
from .dynamic_module_utils import custom_object_save
from .generation import GenerationConfig, TFGenerationMixin
from .tf_utils import (
expand_1d,
load_attributes_from_hdf5_group,
save_attributes_to_hdf5_group,
shape_list,
)
from .utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
TF2_WEIGHTS_INDEX_NAME,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ModelOutput,
PushToHubMixin,
cached_file,
download_url,
find_labels,
has_file,
is_offline_mode,
is_remote_url,
is_safetensors_available,
is_tf_symbolic_tensor,
logging,
requires_backends,
working_or_temp_dir,
)
from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files
if is_safetensors_available():
from safetensors import safe_open
from safetensors.tensorflow import save_file as safe_save_file
if TYPE_CHECKING:
from . import PreTrainedTokenizerBase
logger = logging.get_logger(__name__)
tf_logger = tf.get_logger()
TFModelInputType = Union[
List[tf.Tensor],
List[np.ndarray],
Dict[str, tf.Tensor],
Dict[str, np.ndarray],
tf.Tensor,
np.ndarray,
]
def dummy_loss(y_true, y_pred):
if y_pred.shape.rank <= 1:
return y_pred
else:
reduction_axes = list(range(1, y_pred.shape.rank))
return tf.reduce_mean(y_pred, axis=reduction_axes)
class TFModelUtilsMixin:
"""
A few utilities for `tf.keras.Model`, to be used as a mixin.
"""
def num_parameters(self, only_trainable: bool = False) -> int:
"""
Get the number of (optionally, trainable) parameters in the model.
Args:
only_trainable (`bool`, *optional*, defaults to `False`):
Whether or not to return only the number of trainable parameters
Returns:
`int`: The number of parameters.
"""
if only_trainable:
return int(sum(np.prod(w.shape.as_list()) for w in self.trainable_variables))
else:
return self.count_params()
def keras_serializable(cls):
"""
Decorate a Keras Layer class to support Keras serialization.
This is done by:
1. Adding a `transformers_config` dict to the Keras config dictionary in `get_config` (called by Keras at
serialization time.
2. Wrapping `__init__` to accept that `transformers_config` dict (passed by Keras at deserialization time) and
convert it to a config object for the actual layer initializer.
3. Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not
need to be supplied in `custom_objects` in the call to `tf.keras.models.load_model`.
Args:
cls (a `tf.keras.layers.Layers subclass`):
Typically a `TF.MainLayer` class in this project, in general must accept a `config` argument to its
initializer.
Returns:
The same class object, with modifications for Keras deserialization.
"""
initializer = cls.__init__
config_class = getattr(cls, "config_class", None)
if config_class is None:
raise AttributeError("Must set `config_class` to use @keras_serializable")
@functools.wraps(initializer)
def wrapped_init(self, *args, **kwargs):
config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.pop("config", None)
if isinstance(config, dict):
config = config_class.from_dict(config)
initializer(self, config, *args, **kwargs)
elif isinstance(config, PretrainedConfig):
if len(args) > 0:
initializer(self, *args, **kwargs)
else:
initializer(self, config, *args, **kwargs)
else:
raise ValueError("Must pass either `config` (PretrainedConfig) or `config` (dict)")
self._config = config
self._kwargs = kwargs
cls.__init__ = wrapped_init
if not hasattr(cls, "get_config"):
raise TypeError("Only use @keras_serializable on tf.keras.layers.Layer subclasses")
if hasattr(cls.get_config, "_is_default"):
def get_config(self):
cfg = super(cls, self).get_config()
cfg["config"] = self._config.to_dict()
cfg.update(self._kwargs)
return cfg
cls.get_config = get_config
cls._keras_serializable = True
if hasattr(tf.keras.utils, "register_keras_serializable"):
cls = tf.keras.utils.register_keras_serializable()(cls)
return cls
class TFCausalLanguageModelingLoss:
"""
Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
if self.config.tf_legacy_loss:
# make sure only labels that are not equal to -100 affect the loss
active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
return loss_fn(labels, reduced_logits)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_loss = loss_fn(tf.nn.relu(labels), logits)
# make sure only labels that are not equal to -100 affect the loss
loss_mask = tf.cast(labels != -100, dtype=unmasked_loss.dtype)
masked_loss = unmasked_loss * loss_mask
reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask)
return tf.reshape(reduced_masked_loss, (1,))
class TFQuestionAnsweringLoss:
"""
Loss function suitable for question answering.
"""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
start_loss = loss_fn(labels["start_position"], logits[0])
end_loss = loss_fn(labels["end_position"], logits[1])
return (start_loss + end_loss) / 2.0
class TFTokenClassificationLoss:
"""
Loss function suitable for token classification.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
if tf.executing_eagerly(): # Data-dependent conditionals are forbidden in XLA
if tf.math.reduce_any(labels == -1):
tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.")
if self.config.tf_legacy_loss:
# make sure only labels that are not equal to -100
# are taken into account as loss
if tf.math.reduce_any(labels == -1):
tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.")
active_loss = tf.reshape(labels, (-1,)) != -1
else:
active_loss = tf.reshape(labels, (-1,)) != -100
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
return loss_fn(labels, reduced_logits)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_loss = loss_fn(tf.nn.relu(labels), logits)
# make sure only labels that are not equal to -100 or -1
# are taken into account as loss
loss_mask = tf.cast(labels >= 0, dtype=unmasked_loss.dtype)
# Avoid possible division by zero later
# Masked positions will have a loss of NaN because -100 and -1 are not valid labels
masked_loss = unmasked_loss * loss_mask
reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask)
return tf.reshape(reduced_masked_loss, (1,))
class TFSequenceClassificationLoss:
"""
Loss function suitable for sequence classification.
"""
def hf_compute_loss(self, labels, logits):
if logits.shape.rank == 1 or logits.shape[1] == 1:
loss_fn = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE)
if labels.shape.rank == 1:
# MeanSquaredError returns a scalar loss if the labels are 1D, so avoid that
labels = tf.expand_dims(labels, axis=-1)
else:
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
return loss_fn(labels, logits)
class TFMultipleChoiceLoss:
"""Loss function suitable for multiple choice tasks."""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
return loss_fn(labels, logits)
class TFMaskedLanguageModelingLoss(TFCausalLanguageModelingLoss):
"""
Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
class TFNextSentencePredictionLoss:
"""
Loss function suitable for next sentence prediction (NSP), that is, the task of guessing the next sentence.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
if self.config.tf_legacy_loss:
# make sure only labels that are not equal to -100
# are taken into account as loss
next_sentence_active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
next_sentence_reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, 2)), next_sentence_active_loss)
next_sentence_label = tf.boolean_mask(tf.reshape(labels, (-1,)), next_sentence_active_loss)
return loss_fn(next_sentence_label, next_sentence_reduced_logits)
# make sure only labels that are not equal to -100
# are taken into account as loss
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels), y_pred=logits)
ns_loss_mask = tf.cast(labels != -100, dtype=unmasked_ns_loss.dtype)
# Just zero out samples where label is -100, no reduction
masked_ns_loss = unmasked_ns_loss * ns_loss_mask
return masked_ns_loss
def booleans_processing(config, **kwargs):
"""
Process the input booleans of each model.
Args:
config ([`PretrainedConfig`]):
The config of the running model.
**kwargs:
The boolean parameters
Returns:
A dictionary with the proper values for each boolean
"""
final_booleans = {}
# Pure conv models (such as ConvNext) do not have `output_attentions`. If the signature has
# `output_attentions`, it will be present here in `kwargs`, even if unset (in that case, as `None`)
if "output_attentions" in kwargs:
final_booleans["output_attentions"] = (
kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions
)
final_booleans["output_hidden_states"] = (
kwargs["output_hidden_states"] if kwargs["output_hidden_states"] is not None else config.output_hidden_states
)
final_booleans["return_dict"] = kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict
if "use_cache" in kwargs:
final_booleans["use_cache"] = (
kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None)
)
return final_booleans
def unpack_inputs(func):
"""
Decorator that processes the inputs to a Keras layer, passing them to the layer as keyword arguments. This enables
downstream use of the inputs by their variable name, even if they arrive packed as a dictionary in the first input
(common case in Keras).
Args:
func (`callable`):
The callable function of the TensorFlow model.
Returns:
A callable that wraps the original `func` with the behavior described above.
"""
original_signature = inspect.signature(func)
@functools.wraps(func)
def run_call_with_unpacked_inputs(self, *args, **kwargs):
# isolates the actual `**kwargs` for the decorated function
kwargs_call = {key: val for key, val in kwargs.items() if key not in dict(original_signature.parameters)}
fn_args_and_kwargs = {key: val for key, val in kwargs.items() if key not in kwargs_call}
fn_args_and_kwargs.update({"kwargs_call": kwargs_call})
# move any arg into kwargs, if they exist
fn_args_and_kwargs.update(dict(zip(func.__code__.co_varnames[1:], args)))
# Encoder Decoder models delegate the application of the configuration options to their inner models.
if "EncoderDecoder" in self.__class__.__name__:
config = None
else:
config = self.config
unpacked_inputs = input_processing(func, config, **fn_args_and_kwargs)
return func(self, **unpacked_inputs)
# Keras enforces the first layer argument to be passed, and checks it through `inspect.getfullargspec()`. This
# function does not follow wrapper chains (i.e. ignores `functools.wraps()`), meaning that without the line below
# Keras would attempt to check the first argument against the literal signature of the wrapper.
run_call_with_unpacked_inputs.__signature__ = original_signature
return run_call_with_unpacked_inputs
def input_processing(func, config, **kwargs):
"""
Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input
has to be named accordingly to the parameters name, i.e. `input_ids = tf.keras.Input(shape=(128,), dtype='int32',
name="input_ids")` otherwise the order of the tensors will not be guaranteed during the training.
Args:
func (`callable`):
The callable function of the TensorFlow model.
config ([`PretrainedConfig`]):
The config of the running model.
**kwargs:
The inputs of the model.
Returns:
Two lists, one for the missing layers, and another one for the unexpected layers.
"""
signature = dict(inspect.signature(func).parameters)
has_kwargs = bool(signature.pop("kwargs", None))
signature.pop("self", None)
parameter_names = list(signature.keys())
main_input_name = parameter_names[0]
main_input = kwargs.pop(main_input_name, None)
output = {}
allowed_types = (tf.Tensor, bool, int, ModelOutput, tuple, list, dict, np.ndarray)
if "inputs" in kwargs["kwargs_call"]:
warnings.warn(
"The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
FutureWarning,
)
output["input_ids"] = kwargs["kwargs_call"].pop("inputs")
if "decoder_cached_states" in kwargs["kwargs_call"]:
warnings.warn(
"The `decoder_cached_states` argument is deprecated and will be removed in a future version, use"
" `past_key_values` instead.",
FutureWarning,
)
output["past_key_values"] = kwargs["kwargs_call"].pop("decoder_cached_states")
if "past" in kwargs["kwargs_call"] and "past_key_values" in parameter_names:
warnings.warn(
"The `past` argument is deprecated and will be removed in a future version, use `past_key_values`"
" instead.",
FutureWarning,
)
kwargs["past_key_values"] = kwargs["kwargs_call"].pop("past")
elif "past_key_values" in kwargs["kwargs_call"] and "past" in parameter_names:
kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values")
if has_kwargs:
output["kwargs"] = kwargs.pop("kwargs_call", {})
else:
if len(kwargs["kwargs_call"]) > 0:
raise ValueError(
"The following keyword arguments are not supported by this model:"
f" {list(kwargs['kwargs_call'].keys())}."
)
kwargs.pop("kwargs_call")
for k, v in kwargs.items():
if isinstance(v, allowed_types) or tf.is_tensor(v) or v is None:
output[k] = v
else:
raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
if isinstance(main_input, (tuple, list)):
for i, input in enumerate(main_input):
# EagerTensors don't allow to use the .name property so we check for a real Tensor
if is_tf_symbolic_tensor(input):
# Tensor names have always the pattern `name:id` then we check only the
# `name` part
tensor_name = input.name.split(":")[0]
if tensor_name in parameter_names:
output[tensor_name] = input
else:
output[parameter_names[i]] = input
elif isinstance(input, allowed_types) or input is None:
output[parameter_names[i]] = input
else:
raise ValueError(
f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for"
f" {parameter_names[i]}."
)
elif isinstance(main_input, Mapping):
if "inputs" in main_input:
warnings.warn(
"The `inputs` argument is deprecated and will be removed in a future version, use `input_ids`"
" instead.",
FutureWarning,
)
output["input_ids"] = main_input.pop("inputs")
if "decoder_cached_states" in main_input:
warnings.warn(
"The `decoder_cached_states` argument is deprecated and will be removed in a future version, use"
" `past_key_values` instead.",
FutureWarning,
)
output["past_key_values"] = main_input.pop("decoder_cached_states")
for k, v in dict(main_input).items():
if isinstance(v, allowed_types) or v is None:
output[k] = v
elif k not in parameter_names and "args" not in parameter_names:
logger.warning(
f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored."
)
continue
else:
raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
else:
if tf.is_tensor(main_input) or main_input is None:
output[main_input_name] = main_input
else:
raise ValueError(
f"Data of type {type(main_input)} is not allowed only {allowed_types} is accepted for"
f" {main_input_name}."
)
# Populates any unspecified argument with their default value, according to the signature.
for name in parameter_names:
if name not in list(output.keys()) and name != "args":
output[name] = kwargs.pop(name, signature[name].default)
# When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs)
# So to respect the proper output we have to add this exception
if "args" in output:
if output["args"] is not None and is_tf_symbolic_tensor(output["args"]):
tensor_name = output["args"].name.split(":")[0]
output[tensor_name] = output["args"]
else:
# `args` in this case is always the first parameter, then `input_ids`
output["input_ids"] = output["args"]
del output["args"]
if "kwargs" in output:
del output["kwargs"]
cast_output = {}
for key, val in output.items():
if isinstance(val, tf.Tensor) and val.dtype == tf.int64:
cast_output[key] = tf.cast(val, tf.int32)
elif isinstance(val, np.ndarray) and val.dtype == np.int64:
cast_output[key] = val.astype(np.int32)
else:
cast_output[key] = val
output = cast_output
del cast_output
if config is not None:
boolean_dict = {
k: v
for k, v in output.items()
if k in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"]
}
output.update(
booleans_processing(
config=config,
**boolean_dict,
)
)
return output
def dtype_byte_size(dtype):
"""
Returns the size (in bytes) occupied by one parameter of type `dtype`.
Example:
```py
>>> dtype_byte_size(tf.float32)
4
```
"""
if dtype == tf.bool:
return 1 / 8
bit_search = re.search(r"[^\d](\d+)$", dtype.name)
if bit_search is None:
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
bit_size = int(bit_search.groups()[0])
return bit_size // 8
def strip_model_name_and_prefix(name, _prefix=None):
if _prefix is not None and name.startswith(_prefix):
name = name[len(_prefix) :]
if name.startswith("/"):
name = name[1:]
if "model." not in name and len(name.split("/")) > 1:
name = "/".join(name.split("/")[1:])
return name
def tf_shard_checkpoint(weights, max_shard_size="10GB"):
"""
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
given size.
The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
[6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].
<Tip warning={true}>
If one of the model's weight is bigger that `max_shard_size`, it will end up in its own sub-checkpoint which will
have a size greater than `max_shard_size`.
</Tip>
Args:
weights (`Dict[str, tf.RessourceVariable]`): The list of tf.RessourceVariable of a model to save.
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
(like `"5MB"`).
"""
max_shard_size = convert_file_size_to_int(max_shard_size)
sharded_state_dicts = []
current_block = []
current_block_size = 0
total_size = 0
for item in weights:
weight_size = item.numpy().size * dtype_byte_size(item.dtype)
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
sharded_state_dicts.append(current_block)
current_block = []
current_block_size = 0
current_block.append(item)
current_block_size += weight_size
total_size += weight_size
# Add the last block
sharded_state_dicts.append(current_block)
# If we only have one shard, we return it
if len(sharded_state_dicts) == 1:
return {TF2_WEIGHTS_NAME: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
weight_map = {}
shards = {}
for idx, shard in enumerate(sharded_state_dicts):
shard_file = TF2_WEIGHTS_NAME.replace(".h5", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.h5")
shards[shard_file] = shard
for weight in shard:
weight_name = weight.name
weight_map[weight_name] = shard_file
# Add the metadata
metadata = {"total_size": total_size}
index = {"metadata": metadata, "weight_map": weight_map}
return shards, index
def load_tf_sharded_weights(model, shard_files, ignore_mismatched_sizes=False, strict=False, _prefix=None):
"""
This is the same as `load_tf_weights` but for a sharded checkpoint. Detect missing and unexpected layers and load
the TF weights from the shard file accordingly to their names and shapes.
This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
loaded in the model.
Args:
model (`tf.keras.models.Model`): The model in which to load the checkpoint.
shard_files (`str` or `os.PathLike`): A list containing the sharded checkpoint names.
ignore_mismatched_sizes`bool`, *optional`, defaults to `True`):
Whether or not to ignore the mismatch between the sizes
strict (`bool`, *optional*, defaults to `True`):
Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
Returns:
Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the
mismatched layers.
"""
# Load the index
unexpected_keys = set()
saved_keys = set()
mismatched_keys = set()
# Since TF adds the name of the class to its weights, and uses the index and not the name of the layer to load
# the weight, we have to get rid of the first prefix of the name of the layer.
model_keys = set()
model_layer_map = {}
for i, k in enumerate(model.weights):
layer_name = k.name
if _prefix is not None and layer_name.startswith(_prefix):
layer_name = layer_name[len(_prefix) :]
layer_name = layer_name.lstrip("/")
if not ("model." in layer_name or len(layer_name.split("/")) == 1):
layer_name = "/".join(layer_name.split("/")[1:])
model_keys.add(layer_name)
model_layer_map[layer_name] = i
for shard_file in shard_files:
saved_weight_names_set, unexpected_keys_set, mismatched_keys_set = load_tf_shard(
model,
model_layer_map,
shard_file,
ignore_mismatched_sizes=ignore_mismatched_sizes,
_prefix=_prefix,
)
saved_keys.update(saved_weight_names_set)
unexpected_keys.update(unexpected_keys_set)
mismatched_keys.update(mismatched_keys_set)
gc.collect()
missing_keys = model_keys - saved_keys
if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
if len(missing_keys) > 0:
str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
error_message += f"\nMissing key(s): {str_missing_keys}."
if len(unexpected_keys) > 0:
str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
error_message += f"\nMissing key(s): {str_unexpected_keys}."
raise RuntimeError(error_message)
return missing_keys, unexpected_keys, mismatched_keys
def load_tf_shard(model, model_layer_map, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
"""
Loads a shard from a sharded checkpoint file. Handles the missing keys and unexpected keys.
Args:
model (`tf.keras.models.Model`): Model in which the weights are loaded
model_layer_map (`Dict`): A dictionary mapping the layer name to the index of the layer in the model.
resolved_archive_file (`str`): Path to the checkpoint file from which the weights will be loaded
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether to ignore the mismatched keys
Returns:
`tf.keras.models.Model`: Three lists, one for the layers that were found and succesfully restored (from the
shard file), one for the mismatched layers, and another one for the unexpected layers.
"""
saved_weight_names_set = set()
saved_weights = {}
mismatched_keys = set()
unexpected_keys = set()
# Read the H5 file
try:
with h5py.File(resolved_archive_file, "r") as sharded_checkpoint_file:
# Retrieve the name of each layer from the H5 file
saved_h5_model_layers_name = set(load_attributes_from_hdf5_group(sharded_checkpoint_file, "layer_names"))
weight_value_tuples = []
# Compute missing and unexpected sub layers
# Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...]
for layer_name in saved_h5_model_layers_name:
h5_layer_object = sharded_checkpoint_file[layer_name]
saved_weights[layer_name] = np.asarray(h5_layer_object)
saved_weight_names_set.add(layer_name)
if layer_name not in model_layer_map:
unexpected_keys.add(layer_name)
else:
symbolic_weight = model.weights[model_layer_map[layer_name]]
saved_weight_value = saved_weights[layer_name]
# If the current weight is found
if saved_weight_value is not None:
# Check if the shape of the current weight and the one from the H5 file are different
if K.int_shape(symbolic_weight) != saved_weight_value.shape:
# If yes we reshape the weight from the H5 file accordingly to the current weight
# If the two shapes are not compatible we raise an issue
try:
array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight))
except ValueError as e:
if ignore_mismatched_sizes:
mismatched_keys.add(
(layer_name, saved_weight_value.shape, K.int_shape(symbolic_weight))
)
continue
else:
raise e
else:
array = saved_weight_value
# We create the tuple that will be loaded and add it to the final list
weight_value_tuples.append((symbolic_weight, array))
K.batch_set_value(weight_value_tuples)
return saved_weight_names_set, unexpected_keys, mismatched_keys
except Exception as e:
try:
with open(resolved_archive_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please install "
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
"you cloned."
)
else:
raise ValueError(
f"Unable to locate the file {resolved_archive_file} which is necessary to load this pretrained"
" model. Make sure you have saved the model properly."
) from e
except (UnicodeDecodeError, ValueError):
raise OSError(
f"Unable to load weights from TF checkpoint file for '{resolved_archive_file}' "
f"at '{resolved_archive_file}'. "
"If you tried to load a TF model from a sharded checkpoint, you should try converting the model "
"by loading it in pytorch and saving it localy. A convertion script should be realeased soon."
)
def load_tf_weights(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
"""
Detect missing and unexpected layers and load the TF weights from the shard file accordingly to their names and
shapes.
Args:
model (`tf.keras.models.Model`):
The model to load the weights into.
resolved_archive_file (`str`):
The location of the H5 file.
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
Whether or not to ignore weights with shapes that don't match between the checkpoint of the model.
Returns:
Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the
mismatched layers.
"""
if resolved_archive_file.endswith(".safetensors"):
load_function = load_tf_weights_from_safetensors
else:
load_function = load_tf_weights_from_h5
return load_function(
model, resolved_archive_file, ignore_mismatched_sizes=ignore_mismatched_sizes, _prefix=_prefix
)
def load_tf_weights_from_h5(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
mismatched_layers = []
# Read the H5 file
with h5py.File(resolved_archive_file, "r") as sharded_checkpoint_file:
# Retrieve the name of each layer from the H5 file
saved_h5_model_layers_name = set(load_attributes_from_hdf5_group(sharded_checkpoint_file, "layer_names"))
# Find the missing layers from the high level list of layers
missing_layers = list({layer.name for layer in model.layers} - saved_h5_model_layers_name)
# Find the unexpected layers from the high level list of layers
unexpected_layers = list(saved_h5_model_layers_name - {layer.name for layer in model.layers})
saved_weight_names_set = set()
symbolic_weights_names = set()
weight_value_tuples = []
# Compute missing and unexpected sub layers
# Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...]
for layer in model.layers:
# if layer_name from the H5 file belongs to the layers from the instantiated model
if layer.name in saved_h5_model_layers_name:
# Get the H5 layer object from its name
h5_layer_object = sharded_checkpoint_file[layer.name]
# Get all the weights as a list from the layer object
symbolic_weights = layer.trainable_weights + layer.non_trainable_weights
saved_weights = {}
# Create a dict from the H5 saved model that looks like {"weight_name": weight_value}
# And a set with only the names
for weight_name in load_attributes_from_hdf5_group(h5_layer_object, "weight_names"):
# TF names always start with the model name so we ignore it
name = "/".join(weight_name.split("/")[1:])
if _prefix is not None:
name = _prefix + "/" + name
saved_weights[name] = np.asarray(h5_layer_object[weight_name])
# Add the updated name to the final list for computing missing/unexpected values
saved_weight_names_set.add(name)
# Loop over each weights from the instantiated model and compare with the weights from the H5 file
for symbolic_weight in symbolic_weights:
# TF names always start with the model name so we ignore it
if _prefix is not None:
delimeter = len(_prefix.split("/"))
symbolic_weight_name = "/".join(
symbolic_weight.name.split("/")[:delimeter]
+ symbolic_weight.name.split("/")[delimeter + 1 :]
)
else:
symbolic_weight_name = "/".join(symbolic_weight.name.split("/")[1:])
# here we check if the current weight is among the weights from the H5 file
# If yes, get the weight_value of the corresponding weight from the H5 file
# If not, make the value to None
saved_weight_value = saved_weights.get(symbolic_weight_name, None)
# Retrocompatibility patch: some embeddings are stored with the weights name (e.g. Bart's
# `model.shared/embeddings:0` are stored as `model.shared/weights:0`)
if saved_weight_value is None and symbolic_weight_name.endswith("embeddings:0"):
symbolic_weight_name = symbolic_weight_name[:-12] + "weight:0"
saved_weight_value = saved_weights.get(symbolic_weight_name, None)
# Add the updated name to the final list for computing missing/unexpected values
symbolic_weights_names.add(symbolic_weight_name)
# If the current weight is found
if saved_weight_value is not None:
# Check if the shape of the current weight and the one from the H5 file are different
if K.int_shape(symbolic_weight) != saved_weight_value.shape:
# If yes we reshape the weight from the H5 file accordingly to the current weight
# If the two shapes are not compatible we raise an issue
try:
array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight))
except ValueError as e:
if ignore_mismatched_sizes:
mismatched_layers.append(
(symbolic_weight_name, saved_weight_value.shape, K.int_shape(symbolic_weight))
)
continue
else:
raise e
else:
array = saved_weight_value
# We create the tuple that will be loaded and add it to the final list
weight_value_tuples.append((symbolic_weight, array))
# Load all the weights
K.batch_set_value(weight_value_tuples)
# Compute the missing and unexpected layers
missing_layers.extend(list(symbolic_weights_names - saved_weight_names_set))
unexpected_layers.extend(list(saved_weight_names_set - symbolic_weights_names))
return missing_layers, unexpected_layers, mismatched_layers
def load_tf_weights_from_safetensors(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
# Read the safetensors file
with safe_open(resolved_archive_file, framework="tf") as safetensors_archive:
mismatched_layers = []
weight_names = [strip_model_name_and_prefix(w.name, _prefix=_prefix) for w in model.weights]
loaded_weight_names = list(safetensors_archive.keys())
# Find the missing layers from the high level list of layers
missing_layers = list(set(weight_names) - set(loaded_weight_names))
# Find the unexpected layers from the high level list of layers
unexpected_layers = list(set(loaded_weight_names) - set(weight_names))
for weight in model.weights:
weight_name = strip_model_name_and_prefix(weight.name, _prefix=_prefix)
if weight_name in loaded_weight_names:
weight_value = safetensors_archive.get_tensor(weight_name)
# Check if the shape of the current weight and the one from the H5 file are different
if K.int_shape(weight) != weight_value.shape:
# If yes we reshape the weight from the H5 file accordingly to the current weight
# If the two shapes are not compatible we raise an issue
try:
weight_value = tf.reshape(weight_value, K.int_shape(weight))
except (ValueError, tf.errors.InvalidArgumentError) as e:
if ignore_mismatched_sizes:
mismatched_layers.append((weight_name, weight_value.shape, K.int_shape(weight)))
continue
else:
raise e
K.set_value(weight, weight_value) # weight.assign() might break if weight is a DTensor
return missing_layers, unexpected_layers, mismatched_layers
def init_copy_embeddings(old_embeddings, new_num_tokens):
r"""
This function aims to reduce the embeddings in case new_num_tokens < old_num_tokens or to pad with -1 in case
new_num_tokens > old_num_tokens. A mask is also computed in order to know which weight in the embeddings should be
kept or not. Example:
- if new_num_tokens=5 and old_num_tokens=4 and old_embeddings=[w1,w2,w3,w4]
- mask=[True,True,True,True,False] and current_weights=[w1,w2,w3,w4,-1]
- if new_num_tokens=4 and old_num_tokens=5 and old_embeddings=[w1,w2,w3,w4,w5]
- mask=[True,True,True,True] and current_weights=[w1,w2,w3,w4]
"""
old_num_tokens, old_embedding_dim = shape_list(old_embeddings)
size_diff = new_num_tokens - old_num_tokens
# initialize new embeddings
# Copy token embeddings from the previous ones
if tf.math.greater(size_diff, 0):
# if the new size is greater than the old one, we extend the current embeddings with a padding until getting new size
# and we create a mask to properly identify the padded values and be replaced by the values of the newly created
# embeddings
current_weights = tf.pad(
old_embeddings.value(), tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=-1
)
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
mask = tf.fill(tf.convert_to_tensor([num_tokens_to_copy, 1]), True)
mask = tf.pad(mask, tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=False)
else:
# if the new size if lower than the old one, we take the current embeddings until the new size
current_weights = tf.slice(
old_embeddings.value(),
tf.convert_to_tensor([0, 0]),
tf.convert_to_tensor([new_num_tokens, old_embedding_dim]),
)
mask = tf.fill(tf.convert_to_tensor([new_num_tokens, 1]), True)
return mask, current_weights
class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushToHubMixin):
r"""
Base class for all TF models.
[`TFPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
downloading and saving models as well as a few methods common to all models to:
- resize the input embeddings,
- prune heads in the self-attention heads.
Class attributes (overridden by derived classes):
- **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
for this model architecture.
- **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
classes of the same architecture adding modules on top of the base model.
- **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
models, `pixel_values` for vision models and `input_values` for speech models).
"""
config_class = None
base_model_prefix = ""
main_input_name = "input_ids"
_auto_class = None
_using_dummy_loss = None
_label_to_output_map = None
# a list of re pattern of tensor names to ignore from the model when loading the model weights
# (and avoid unnecessary warnings).
_keys_to_ignore_on_load_missing = None
# a list of re pattern of tensor names to ignore from the weights when loading the model weights
# (and avoid unnecessary warnings).
_keys_to_ignore_on_load_unexpected = None
_requires_load_weight_prefix = False
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
dummies = {}
for key, spec in self.input_signature.items():
# 2 is the most correct arbitrary size. I will not be taking questions
dummy_shape = [dim if dim is not None else 2 for dim in spec.shape]
if spec.shape[0] is None:
# But let's make the batch size 1 to save memory anyway
dummy_shape[0] = 1
dummies[key] = tf.ones(shape=dummy_shape, dtype=spec.dtype)
if key == "token_type_ids":
# Some models have token_type_ids but with a vocab_size of 1
dummies[key] = tf.zeros_like(dummies[key])
if self.config.add_cross_attention and "encoder_hidden_states" in inspect.signature(self.call).parameters:
if "encoder_hidden_states" not in dummies:
if self.main_input_name == "input_ids":
dummies["encoder_hidden_states"] = tf.ones(
shape=(1, 2, self.config.hidden_size), dtype=tf.float32, name="encoder_hidden_states"
)
else:
raise NotImplementedError(
"Model has cross-attention but we couldn't infer the shape for the encoder hidden states. Please manually override dummy_inputs!"
)
return dummies
def build_in_name_scope(self):
with tf.name_scope(self.name):
self.build(input_shape=None)
@property
def framework(self) -> str:
"""
:str: Identifies that this is a TensorFlow model.
"""
return "tf"
def build(self, input_shape=None):
pass # This is just here to make sure we don't call the superclass build()
def __init__(self, config, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
if not isinstance(config, PretrainedConfig):
raise ValueError(
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
"`PretrainedConfig`. To create a model from a pretrained model use "
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
# Save config and origin of the pretrained weights if given in model
self.config = config
self.name_or_path = config.name_or_path
self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
self._set_save_spec(self.input_signature)
def get_config(self):
return self.config.to_dict()
@classmethod
def from_config(cls, config, **kwargs):
if isinstance(config, PretrainedConfig):
return cls._from_config(config, **kwargs)
return cls._from_config(cls.config_class.from_dict(config, **kwargs))
@classmethod
def _from_config(cls, config, **kwargs):
"""
All context managers that the model should be initialized under go here.
"""
return cls(config, **kwargs)
def get_head_mask(self, head_mask: tf.Tensor | None, num_hidden_layers: int) -> tf.Tensor:
"""
Prepare the head mask if needed.
Args:
head_mask (`tf.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
num_hidden_layers (`int`):
The number of hidden layers in the model.
Returns:
`tf.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
`[None]` for each layer.
"""
if head_mask is not None:
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
else:
head_mask = [None] * num_hidden_layers
return head_mask
def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
"""-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
if head_mask.shape.rank == 1:
head_mask = head_mask[None, None, :, None, None]
head_mask = tf.repeat(head_mask, repeats=num_hidden_layers, axis=0)
elif head_mask.shape.rank == 2:
head_mask = head_mask[:, None, :, None, None]
assert head_mask.shape.rank == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
head_mask = tf.cast(head_mask, tf.float32) # switch to float if need + fp16 compatibility
return head_mask
@tf.function
def serving(self, inputs):
"""
Args:
Method used for serving the model. Does not have a specific signature, but will be specialized as concrete
functions when saving with `save_pretrained`.
inputs (`Dict[str, tf.Tensor]`):
The input of the saved model as a dictionary of tensors.
"""
output = self.call(inputs)
return self.serving_output(output)
def eager_serving(self, inputs):
"""
Method used for serving the model. This method is deprecated, and will be removed.
Args:
inputs (`Dict[str, tf.Tensor]`):
The input of the saved model as a dictionary of tensors.
"""
warnings.warn(
"The function `eager_serving` is deprecated and will be removed in version 4.32.0 of Transformers",
FutureWarning,
)
output = self.call(inputs)
return self.serving_output(output)
@property
def input_signature(self) -> Dict[str, tf.TensorSpec]:
"""
This property should return a dict mapping input names to tf.TensorSpec objects, representing the expected
shape and dtype for model inputs. It is used for both serving and for generating the dummy inputs used to build
the model.
"""
model_inputs = list(inspect.signature(self.call).parameters)
sig = {}
if "input_ids" in model_inputs:
if self.__class__.__name__.endswith("ForMultipleChoice"):
text_dims = 3
else:
text_dims = 2
for input_name in (
"input_ids",
"attention_mask",
"token_type_ids",
"decoder_input_ids",
"decoder_attention_mask",
):
if input_name in model_inputs:
sig[input_name] = tf.TensorSpec([None] * text_dims, tf.int32, name=input_name)
if "pixel_values" in model_inputs:
pixel_values_shape = [None, None, None, None]
if hasattr(self.config, "vision_config"):
vision_config = self.config.vision_config
else:
vision_config = self.config
if hasattr(vision_config, "num_channels"):
pixel_values_shape[1] = vision_config.num_channels
else:
raise NotImplementedError(
"Could not infer number of channels from config, please override input_signature to specify input shapes."
)
if hasattr(vision_config, "image_size"):
pixel_values_shape[2] = pixel_values_shape[3] = vision_config.image_size
elif hasattr(vision_config, "input_size"):
pixel_values_shape[2] = pixel_values_shape[3] = vision_config.input_size
else:
raise NotImplementedError(
"Could not infer input image shape from config, please override input_signature to specify input shapes."
)
sig["pixel_values"] = tf.TensorSpec(pixel_values_shape, tf.float32, name="pixel_values")
if "input_features" in model_inputs:
raise NotImplementedError("Audio models need a manually defined input_signature")
return sig
def serving_output(self, output):
"""
Prepare the output of the saved model. Can be overridden if specific serving modifications are required.
"""
if not isinstance(output, ModelOutput):
return output
for key in output:
if key.endswith("hidden_states") and not getattr(self.config, "output_hidden_states", False):
output[key] = None
elif key.endswith("attentions") and not getattr(self.config, "output_attentions", False):
output[key] = None
elif key == "past_key_values" and not getattr(self.config, "use_cache", False):
output[key] = None
elif key == "cross_attentions" and not (
getattr(self.config, "output_attentions", False) and getattr(self.config, "add_cross_attention", False)
):
output[key] = None
if isinstance(output[key], (tuple, list)):
try:
output[key] = tf.convert_to_tensor(output[key])
except (ValueError, tf.errors.InvalidArgumentError):
pass # Layers may not have the same dimensions
return output
@classmethod
def can_generate(cls) -> bool:
"""
Returns whether this model can generate sequences with `.generate()`.
Returns:
`bool`: Whether this model can generate sequences with `.generate()`.
"""
# Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
# Alternativelly, the model can also have a custom `generate` function.
if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
return False
return True
def get_input_embeddings(self) -> tf.keras.layers.Layer:
"""
Returns the model's input embeddings layer.
Returns:
`tf.Variable`: The embeddings layer mapping vocabulary to hidden states.
"""
main_layer = getattr(self, self.base_model_prefix, self)
if main_layer is not self:
return main_layer.get_input_embeddings()
else:
raise NotImplementedError
def _save_checkpoint(self, checkpoint_dir, epoch):
if not os.path.isdir(checkpoint_dir):
os.mkdir(checkpoint_dir)
# We avoid tf.train.checkpoint or saving weights in TF format, even though that includes optimizer
# state for us, because it requires special handling for objects like custom losses, which we use
# internally and which users are likely to use too
weights_path = os.path.join(checkpoint_dir, "weights.h5")
self.save_weights(weights_path)
extra_data = {"epoch": epoch, "optimizer_state": self.optimizer.get_weights()}
extra_data_path = os.path.join(checkpoint_dir, "extra_data.pickle")
with open(extra_data_path, "wb") as f:
pickle.dump(extra_data, f)
def load_repo_checkpoint(self, repo_path_or_name):
"""
Loads a saved checkpoint (model weights and optimizer state) from a repo. Returns the current epoch count when
the checkpoint was made.
Args:
repo_path_or_name (`str`):
Can either be a repository name for your {object} in the Hub or a path to a local folder (in which case
the repository will have the name of that local folder).
Returns:
`dict`: A dictionary of extra metadata from the checkpoint, most commonly an "epoch" count.
"""
if getattr(self, "optimizer", None) is None:
raise RuntimeError(
"Checkpoint loading failed as no optimizer is attached to the model. "
"This is most likely caused by the model not being compiled."
)
if os.path.isdir(repo_path_or_name):
local_dir = repo_path_or_name
else:
# If this isn't a local path, check that the remote repo exists and has a checkpoint in it
repo_files = list_repo_files(repo_path_or_name)
for file in ("checkpoint/weights.h5", "checkpoint/extra_data.pickle"):
if file not in repo_files:
raise FileNotFoundError(f"Repo {repo_path_or_name} does not contain checkpoint file {file}!")
repo = Repository(repo_path_or_name.split("/")[-1], clone_from=repo_path_or_name)
local_dir = repo.local_dir
# Now make sure the repo actually has a checkpoint in it.
checkpoint_dir = os.path.join(local_dir, "checkpoint")
weights_file = os.path.join(checkpoint_dir, "weights.h5")
if not os.path.isfile(weights_file):
raise FileNotFoundError(f"Could not find checkpoint file weights.h5 in repo {repo_path_or_name}!")
extra_data_file = os.path.join(checkpoint_dir, "extra_data.pickle")
if not os.path.isfile(extra_data_file):
raise FileNotFoundError(f"Could not find checkpoint file extra_data.pickle in repo {repo_path_or_name}!")
# Assuming the repo is real and we got a checkpoint, load the weights and the optimizer state into the model.
# The optimizer state includes the iteration count, so learning rate schedules should resume as normal too.
self.load_weights(weights_file)
with open(extra_data_file, "rb") as f:
extra_data = pickle.load(f)
self.optimizer.set_weights(extra_data["optimizer_state"])
# Finally, return the epoch number from the checkpoint. This isn't a property of the model, so we can't
# set it directly, but the user can pass it to fit().
return {"epoch": extra_data["epoch"]}
def prepare_tf_dataset(
self,
dataset: "datasets.Dataset", # noqa:F821
batch_size: int = 8,
shuffle: bool = True,
tokenizer: Optional["PreTrainedTokenizerBase"] = None,
collate_fn: Optional[Callable] = None,
collate_fn_args: Optional[Dict[str, Any]] = None,
drop_remainder: Optional[bool] = None,
prefetch: bool = True,
):
"""
Wraps a HuggingFace [`~datasets.Dataset`] as a `tf.data.Dataset` with collation and batching. This method is
designed to create a "ready-to-use" dataset that can be passed directly to Keras methods like `fit()` without
further modification. The method will drop columns from the dataset if they don't match input names for the
model. If you want to specify the column names to return rather than using the names that match this model, we
recommend using `Dataset.to_tf_dataset()` instead.
Args:
dataset (`Any`):
A [~`datasets.Dataset`] to be wrapped as a `tf.data.Dataset`.
batch_size (`int`, defaults to 8):
The size of batches to return.
shuffle (`bool`, defaults to `True`):
Whether to return samples from the dataset in random order. Usually `True` for training datasets and
`False` for validation/test datasets.
tokenizer ([`PreTrainedTokenizerBase`], *optional*):
A `PreTrainedTokenizer` that will be used to pad samples to create batches. Has no effect if a specific
`collate_fn` is passed instead.
collate_fn (`Callable`, *optional*):
A function that collates samples from the dataset into a single batch. Defaults to
`DefaultDataCollator` if no `tokenizer` is supplied or `DataCollatorWithPadding` if a `tokenizer` is
passed.
collate_fn_args (`Dict[str, Any]`, *optional*):
A dict of arguments to pass to the `collate_fn` alongside the list of samples.
drop_remainder (`bool`, *optional*):
Whether to drop the final batch, if the batch_size does not evenly divide the dataset length. Defaults
to the same setting as `shuffle`.
prefetch (`bool`, defaults to `True`):
Whether to add prefetching to the end of the `tf.data` pipeline. This is almost always beneficial for
performance, but can be disabled in edge cases.
Returns:
`Dataset`: A `tf.data.Dataset` which is ready to pass to the Keras API.
"""
requires_backends(self, ["datasets"])
import datasets
if collate_fn is None:
if tokenizer is None:
collate_fn = DefaultDataCollator(return_tensors="np")
else:
collate_fn = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="np")
if collate_fn_args is None:
collate_fn_args = {}
if not isinstance(dataset, datasets.Dataset):
raise TypeError("Dataset argument should be a datasets.Dataset!")
model_inputs = list(inspect.signature(self.call).parameters)
model_labels = find_labels(self.__class__)
if "cols_to_retain" in list(inspect.signature(dataset._get_output_signature).parameters.keys()):
output_signature, _ = dataset._get_output_signature(
dataset,
batch_size=None,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
cols_to_retain=model_inputs,
)
else:
# TODO Matt: This is a workaround for older versions of datasets that are missing the `cols_to_retain`
# argument. We should remove this once the minimum supported version of datasets is > 2.3.2
unwanted_columns = [
feature
for feature in dataset.features
if feature not in model_inputs and feature not in ("label_ids", "label")
]
dataset = dataset.remove_columns(unwanted_columns)
output_signature, _ = dataset._get_output_signature(
dataset, batch_size=None, collate_fn=collate_fn, collate_fn_args=collate_fn_args
)
output_columns = list(output_signature.keys())
feature_cols = [col for col in output_columns if col in model_inputs and col not in model_labels]
label_cols = [col for col in output_columns if col in model_labels]
# Backwards compatibility for older versions of datasets. Previously, if `columns` or `label_cols`
# were a single element list, the returned element spec would be a single element. Now, passing [feature]
# will return a dict structure {"feature": feature}, and passing a single string will return a single element.
feature_cols = feature_cols[0] if len(feature_cols) == 1 else feature_cols
label_cols = label_cols[0] if len(label_cols) == 1 else label_cols
if drop_remainder is None:
drop_remainder = shuffle
tf_dataset = dataset.to_tf_dataset(
columns=feature_cols,
label_cols=label_cols,
batch_size=batch_size,
shuffle=shuffle,
drop_remainder=drop_remainder,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
prefetch=prefetch,
)
return tf_dataset
def compile(
self,
optimizer="rmsprop",
loss="auto_with_warning",
metrics=None,
loss_weights=None,
weighted_metrics=None,
run_eagerly=None,
steps_per_execution=None,
**kwargs,
):
"""
This is a thin wrapper that sets the model's loss output head as the loss if the user does not specify a loss
function themselves.
"""
if loss in ("auto_with_warning", "passthrough"): # "passthrough" for workflow backward compatibility
logger.info(
"No loss specified in compile() - the model's internal loss computation will be used as the "
"loss. Don't panic - this is a common way to train TensorFlow models in Transformers! "
"To disable this behaviour please pass a loss argument, or explicitly pass "
"`loss=None` if you do not want your model to compute a loss. You can also specify `loss='auto'` to "
"get the internal loss without printing this info string."
)
loss = "auto"
if loss == "auto":
loss = dummy_loss
self._using_dummy_loss = True
else:
self._using_dummy_loss = False
parent_args = list(inspect.signature(tf.keras.Model.compile).parameters.keys())
# This argument got renamed, we need to support both versions
if "steps_per_execution" in parent_args:
super().compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
weighted_metrics=weighted_metrics,
run_eagerly=run_eagerly,
steps_per_execution=steps_per_execution,
**kwargs,
)
else:
super().compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
weighted_metrics=weighted_metrics,
run_eagerly=run_eagerly,
experimental_steps_per_execution=steps_per_execution,
**kwargs,
)
def compute_loss(self, *args, **kwargs):
if hasattr(tf.keras.Model, "compute_loss"):
# This will be true in TF 2.8 or greater
return super().compute_loss(*args, **kwargs)
else:
warnings.warn(
"The old compute_loss method is deprecated as it conflicts with the Keras compute_loss "
"method added in TF 2.8. If you want the original HF compute_loss, please call "
"hf_compute_loss() instead. From TF versions >= 2.8, or Transformers versions >= 5, "
"calling compute_loss() will get the Keras method instead.",
FutureWarning,
)
return self.hf_compute_loss(*args, **kwargs)
def get_label_to_output_name_mapping(self):
arg_names = list(inspect.signature(self.call).parameters)
if self._label_to_output_map is not None:
return self._label_to_output_map
elif "start_positions" in arg_names:
return {"start_positions": "start_logits", "end_positions": "end_logits"}
elif "sentence_order_label" in arg_names:
return {"labels": "prediction_logits", "sentence_order_label": "sop_logits"}
elif "next_sentence_label" in arg_names:
return {"labels": "prediction_logits", "next_sentence_label": "seq_relationship_logits"}
elif "mc_labels" in arg_names:
return {"labels": "logits", "mc_labels": "mc_logits"}
else:
return {}
def train_step(self, data):
"""
A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models
and supports directly training on the loss output head. In addition, it ensures input keys are copied to the
labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure
that they are available to the model during the forward pass.
"""
# We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map`
arg_names = list(inspect.signature(self.call).parameters)
label_kwargs = find_labels(self.__class__)
label_to_output = self.get_label_to_output_name_mapping()
output_to_label = {val: key for key, val in label_to_output.items()}
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"):
# Newer TF train steps leave this out
data = expand_1d(data)
x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data)
# If the inputs are mutable dictionaries, make a shallow copy of them because we will modify
# them during input/label pre-processing. This avoids surprising the user by wrecking their data.
# In addition, modifying mutable Python inputs makes XLA compilation impossible.
if isinstance(x, dict):
x = x.copy()
if isinstance(y, dict):
y = y.copy()
# When using a dummy loss, we ensure that separate labels are copied to the correct model arguments,
# if those keys are not already present in the input dict
if self._using_dummy_loss and y is not None:
# If y is a tensor and the model only has one label-like input, map y to that input
if len(label_kwargs) == 1 and isinstance(y, tf.Tensor):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
label_kwarg = next(iter(label_kwargs))
if label_kwarg not in x:
x[label_kwarg] = y
# Otherwise, copy keys from y to x as long as they weren't already present in x
elif isinstance(y, dict):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
for key, val in y.items():
if key in arg_names and key not in x:
x[key] = val
elif output_to_label.get(key, None) in arg_names and key not in x:
x[output_to_label[key]] = val
if y is None:
y = {key: val for key, val in x.items() if key in label_kwargs}
if not y and not self._using_dummy_loss:
raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!")
if isinstance(y, dict):
# Rename labels at this point to match output heads
y = {label_to_output.get(key, key): val for key, val in y.items()}
# Run forward pass.
with tf.GradientTape() as tape:
if self._using_dummy_loss and "return_loss" in arg_names:
y_pred = self(x, training=True, return_loss=True)
else:
y_pred = self(x, training=True)
if self._using_dummy_loss:
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses)
else:
loss = None
# This next block matches outputs to label keys. Tensorflow's standard method for doing this
# can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors)
if isinstance(y, dict) and len(y) == 1:
if list(y.keys())[0] in y_pred.keys():
y_pred = y_pred[list(y.keys())[0]]
elif list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
_, y = y.popitem()
elif isinstance(y, dict):
# If the labels are a dict, match keys from the output by name
y_pred = {key: val for key, val in y_pred.items() if key in y}
elif isinstance(y, tuple) or isinstance(y, list):
# If the labels are a tuple/list, match keys to the output by order, skipping the loss.
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred.to_tuple()[1:]
else:
y_pred = y_pred.to_tuple()
y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems
else:
# If the labels are a single tensor, match them to the first non-loss tensor in the output
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
if loss is None:
loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
# Run backwards pass.
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
self.compiled_metrics.update_state(y, y_pred, sample_weight)
# Collect metrics to return
return_metrics = {}
for metric in self.metrics:
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
def test_step(self, data):
"""
A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models
and supports directly training on the loss output head. In addition, it ensures input keys are copied to the
labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure
that they are available to the model during the forward pass.
"""
# We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map`
arg_names = list(inspect.signature(self.call).parameters)
label_kwargs = find_labels(self.__class__)
label_to_output = self.get_label_to_output_name_mapping()
output_to_label = {val: key for key, val in label_to_output.items()}
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"):
# Newer versions leave this out
data = expand_1d(data)
x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data)
# If the inputs are mutable dictionaries, make a shallow copy of them because we will modify
# them during input/label pre-processing. This avoids surprising the user by wrecking their data.
# In addition, modifying mutable Python inputs makes XLA compilation impossible.
if isinstance(x, dict):
x = x.copy()
if isinstance(y, dict):
y = y.copy()
# When using a dummy loss, we ensure that separate labels are copied to the correct model arguments,
# if those keys are not already present in the input dict
if self._using_dummy_loss and y is not None:
arg_names = list(inspect.signature(self.call).parameters)
# If y is a tensor and the model only has one label-like input, map y to that input
if len(label_kwargs) == 1 and isinstance(y, tf.Tensor):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
label_kwarg = next(iter(label_kwargs))
if label_kwarg not in x:
x[label_kwarg] = y
# Otherwise, copy keys from y to x as long as they weren't already present in x
elif isinstance(y, dict):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
for key, val in y.items():
if key in arg_names and key not in x:
x[key] = val
elif output_to_label.get(key, None) in arg_names and key not in x:
x[output_to_label[key]] = val
if y is None:
y = {key: val for key, val in x.items() if key in label_kwargs}
if not y and not self._using_dummy_loss:
raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!")
if isinstance(y, dict):
# Rename labels at this point to match output heads
y = {label_to_output.get(key, key): val for key, val in y.items()}
# Run forward pass.
if self._using_dummy_loss and "return_loss" in arg_names:
y_pred = self(x, return_loss=True, training=False)
else:
y_pred = self(x, training=False)
if self._using_dummy_loss:
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses)
else:
loss = None
# This next block matches outputs to label keys. Tensorflow's standard method for doing this
# can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors)
if isinstance(y, dict) and len(y) == 1:
if list(y.keys())[0] in y_pred.keys():
y_pred = y_pred[list(y.keys())[0]]
elif list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
_, y = y.popitem()
elif isinstance(y, dict):
# If the labels are a dict, match keys from the output by name
y_pred = {key: val for key, val in y_pred.items() if key in y}
elif isinstance(y, tuple) or isinstance(y, list):
# If the labels are a tuple/list, match keys to the output by order, skipping the loss.
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred.to_tuple()[1:]
else:
y_pred = y_pred.to_tuple()
y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems
else:
# If the labels are a single tensor, match them to the first non-loss tensor in the output
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
if loss is None:
loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
self.compiled_metrics.update_state(y, y_pred, sample_weight)
# Collect metrics to return
return_metrics = {}
for metric in self.metrics:
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
def create_model_card(
self,
output_dir,
model_name: str,
language: Optional[str] = None,
license: Optional[str] = None,
tags: Optional[str] = None,
finetuned_from: Optional[str] = None,
tasks: Optional[str] = None,
dataset_tags: Optional[Union[str, List[str]]] = None,
dataset: Optional[Union[str, List[str]]] = None,
dataset_args: Optional[Union[str, List[str]]] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
output_dir (`str` or `os.PathLike`):
The folder in which to create the model card.
model_name (`str`, *optional*):
The name of the model.
language (`str`, *optional*):
The language of the model (if applicable)
license (`str`, *optional*):
The license of the model. Will default to the license of the pretrained model used, if the original
model given to the `Trainer` comes from a repo on the Hub.
tags (`str` or `List[str]`, *optional*):
Some tags to be included in the metadata of the model card.
finetuned_from (`str`, *optional*):
The name of the model used to fine-tune this one (if applicable). Will default to the name of the repo
of the original model given to the `Trainer` (if it comes from the Hub).
tasks (`str` or `List[str]`, *optional*):
One or several task identifiers, to be included in the metadata of the model card.
dataset_tags (`str` or `List[str]`, *optional*):
One or several dataset tags, to be included in the metadata of the model card.
dataset (`str` or `List[str]`, *optional*):
One or several dataset identifiers, to be included in the metadata of the model card.
dataset_args (`str` or `List[str]`, *optional*):
One or several dataset arguments, to be included in the metadata of the model card.
"""
# Avoids a circular import by doing this when necessary.
from .modelcard import TrainingSummary # tests_ignore
training_summary = TrainingSummary.from_keras(
self,
keras_history=self.history,
language=language,
license=license,
tags=tags,
model_name=model_name,
finetuned_from=finetuned_from,
tasks=tasks,
dataset_tags=dataset_tags,
dataset=dataset,
dataset_args=dataset_args,
)
model_card = training_summary.to_model_card()
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(model_card)
def set_input_embeddings(self, value):
"""
Set model's input embeddings
Args:
value (`tf.Variable`):
The new weights mapping hidden states to vocabulary.
"""
main_layer = getattr(self, self.base_model_prefix)
if main_layer is None:
raise NotImplementedError("The model does not implements the base_model_prefix attribute.")
try:
main_layer.set_input_embeddings(value)
except AttributeError:
logger.info("Building the model")
self.build_in_name_scope()
main_layer.set_input_embeddings(value)
def get_output_embeddings(self) -> Union[None, tf.keras.layers.Layer]:
"""
Returns the model's output embeddings
Returns:
`tf.Variable`: The new weights mapping vocabulary to hidden states.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
return lm_head.get_output_embeddings()
except AttributeError:
logger.info("Building the model")
self.build_in_name_scope()
return lm_head().get_output_embeddings()
return None # Overwrite for models with output embeddings
def set_output_embeddings(self, value):
"""
Set model's output embeddings
Args:
value (`tf.Variable`):
The new weights mapping hidden states to vocabulary.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
lm_head.set_output_embeddings(value)
except AttributeError:
logger.info("Building the model")
self.build_in_name_scope()
lm_head.set_output_embeddings(value)
def get_output_layer_with_bias(self) -> Union[None, tf.keras.layers.Layer]:
"""
Get the layer that handles a bias attribute in case the model has an LM head with weights tied to the
embeddings
Return:
`tf.keras.layers.Layer`: The layer that handles the bias, None if not an LM model.
"""
warnings.warn(
"The method get_output_layer_with_bias is deprecated. Please use `get_lm_head` instead.", FutureWarning
)
return self.get_lm_head()
def get_prefix_bias_name(self) -> Union[None, str]:
"""
Get the concatenated _prefix name of the bias from the model name to the parent layer
Return:
`str`: The _prefix name of the bias.
"""
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return None
def get_bias(self) -> Union[None, Dict[str, tf.Variable]]:
"""
Dict of bias attached to an LM head. The key represents the name of the bias attribute.
Return:
`tf.Variable`: The weights representing the bias, None if not an LM model.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
return lm_head.get_bias()
except AttributeError:
self.build_in_name_scope()
return lm_head.get_bias()
return None
def set_bias(self, value):
"""
Set all the bias in the LM head.
Args:
value (`Dict[tf.Variable]`):
All the new bias attached to an LM head.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
lm_head.set_bias(value)
except AttributeError:
self.build_in_name_scope()
lm_head.set_bias(value)
def get_lm_head(self) -> tf.keras.layers.Layer:
"""
The LM Head layer. This method must be overwritten by all the models that have a lm head.
Return:
`tf.keras.layers.Layer`: The LM head layer if the model has one, None if not.
"""
return None
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None
) -> Union[tf.keras.layers.Embedding, tf.Variable]:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
Arguments:
new_num_tokens (`int`, *optional*):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens without doing anything.
Return:
`tf.Variable` or `tf.keras.layers.Embedding`: Pointer to the input tokens of the model.
"""
# TODO (joao): flagged for replacement (by `_v2_resized_token_embeddings`) due to embeddings refactor
# Run the new code path if the model has a keras embeddings layer
if isinstance(self.get_input_embeddings(), tf.keras.layers.Embedding):
return self._v2_resized_token_embeddings(new_num_tokens)
if new_num_tokens is None or new_num_tokens == self.config.vocab_size:
return self._get_word_embedding_weight(self.get_input_embeddings())
model_embeds = self._resize_token_embeddings(new_num_tokens)
# Update base model and current model config
self.config.vocab_size = new_num_tokens
return model_embeds
def _v2_resized_token_embeddings(self, new_num_tokens: Optional[int] = None) -> tf.keras.layers.Embedding:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
Arguments:
new_num_tokens (`int`, *optional*):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens without doing anything.
Return:
`tf.keras.layers.Embedding`: Pointer to the input tokens of the model.
"""
if new_num_tokens is None or new_num_tokens == self.config.vocab_size:
return self.get_input_embeddings()
model_embeds = self._v2_resize_token_embeddings(new_num_tokens)
# Update base model and current model config
self.config.vocab_size = new_num_tokens
return model_embeds
def _get_word_embedding_weight(model, embedding_layer):
# TODO (joao): flagged for delection due to embeddings refactor
# If the variable holds the weights themselves, return them
if isinstance(embedding_layer, tf.Tensor):
return embedding_layer
# Otherwise, try to get them from the layer's attributes
embeds = getattr(embedding_layer, "weight", None)
if embeds is not None:
return embeds
embeds = getattr(embedding_layer, "decoder", None)
if embeds is not None:
return embeds
# The reason why the attributes don't exist might be
# because the model is not built, so retry getting
# the argument after building the model
model.build_in_name_scope()
embeds = getattr(embedding_layer, "weight", None)
if embeds is not None:
return embeds
embeds = getattr(embedding_layer, "decoder", None)
if embeds is not None:
return embeds
return None
def _resize_token_embeddings(self, new_num_tokens):
# TODO (joao): flagged for replacement (by `_v2_resize_token_embeddings`) due to embeddings refactor
old_embeddings = self._get_word_embedding_weight(self.get_input_embeddings())
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
# if word embeddings are not tied, make sure that lm head bias is resized as well
if self.get_bias() is not None:
old_lm_head_bias = self.get_bias()
new_lm_head_bias = self._get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens)
self.set_bias(new_lm_head_bias)
# if word embeddings are not tied, make sure that lm head decoder is resized as well
if self.get_output_embeddings() is not None:
old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings())
new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens)
self.set_output_embeddings(new_lm_head_decoder)
self.set_input_embeddings(new_embeddings)
return self.get_input_embeddings()
def _v2_resize_token_embeddings(self, new_num_tokens):
old_embeddings = self.get_input_embeddings()
new_embeddings = self._v2_get_resized_embeddings(old_embeddings, new_num_tokens)
self.set_input_embeddings(new_embeddings)
# If word embeddings are not tied, make sure that lm head bias is resized as well
if self.get_bias() is not None:
old_lm_head_bias = self.get_bias()
new_lm_head_bias = self._v2_get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens)
self.set_bias(new_lm_head_bias)
# If word embeddings are not tied, make sure that lm head decoder is resized as well.
tied_weights = self.get_input_embeddings() == self.get_output_embeddings()
if self.get_output_embeddings() is not None and not tied_weights:
old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings())
# TODO (joao): this one probably needs a v2 version with other models
new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens)
self.set_output_embeddings(new_lm_head_decoder)
return self.get_input_embeddings()
def _get_resized_lm_head_bias(self, old_lm_head_bias, new_num_tokens):
"""
Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
Args:
old_lm_head_bias (`tf.Variable`):
Old lm head bias to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the linear matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns None
Return:
`tf.Variable`: Pointer to the resized bias.
"""
# TODO (joao): flagged for replacement (by `_v2_get_resized_lm_head_bias`) due to embeddings refactor
new_lm_head_bias = {}
for attr, weight in old_lm_head_bias.items():
first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight)
size_diff = new_num_tokens - old_num_tokens
final_shape = [new_num_tokens] if first_dim is None else [first_dim, new_num_tokens]
# initialize new bias
if tf.math.greater(size_diff, 0):
padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]]
current_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape), constant_values=-1)
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
mask_shape = [num_tokens_to_copy] if first_dim is None else [1, num_tokens_to_copy]
bias_mask = tf.fill(tf.convert_to_tensor(mask_shape), True)
bias_mask = tf.pad(bias_mask, tf.convert_to_tensor(padding_shape), constant_values=False)
else:
slice_from = [0] if first_dim is None else [0, 0]
current_bias = tf.slice(
weight.value(), tf.convert_to_tensor(slice_from), tf.convert_to_tensor(final_shape)
)
bias_mask = tf.fill(tf.convert_to_tensor(final_shape), True)
new_bias = self.add_weight(
shape=final_shape,
initializer="zeros",
trainable=True,
name=weight.name.split(":")[0],
)
init_bias = tf.where(bias_mask, current_bias, new_bias.value())
new_bias.assign(init_bias)
new_lm_head_bias[attr] = new_bias
return new_lm_head_bias
def _v2_get_resized_lm_head_bias(
self, old_lm_head_bias: Dict[str, tf.Variable], new_num_tokens: int
) -> Dict[str, tf.Tensor]:
"""
Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
Args:
old_lm_head_bias (`Dict[str, tf.Variable]`):
Old lm head bias to be resized.
new_num_tokens (`int`):
New number of tokens in the linear matrix. Increasing the size will add newly initialized vectors at
the end. Reducing the size will remove vectors from the end.
Return:
`tf.Tensor`: Values for the resized bias.
"""
new_lm_head_bias = {}
for attr, weight in old_lm_head_bias.items():
# Determine the size difference (depending on the shape)
first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight)
size_diff = new_num_tokens - old_num_tokens
# Copy the old bias values to the new bias
if old_num_tokens > new_num_tokens:
new_bias = weight.value()[..., :new_num_tokens]
else:
padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]]
new_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape))
new_lm_head_bias[attr] = new_bias
return new_lm_head_bias
def _get_resized_lm_head_decoder(self, old_lm_head_decoder, new_num_tokens):
"""
Build a resized decoder from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
Args:
old_lm_head_decoder (`tf.Variable`):
Old lm head decoder to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the linear matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns None
Return:
`tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different from the input
ones.
"""
new_lm_head_decoder = old_lm_head_decoder
is_input_output_equals = tf.reduce_any(
self._get_word_embedding_weight(self.get_input_embeddings()) == old_lm_head_decoder
)
if old_lm_head_decoder is not None and not is_input_output_equals:
old_embedding_dim = shape_list(old_lm_head_decoder)[1]
decoder_mask, current_decoder = init_copy_embeddings(old_lm_head_decoder, new_num_tokens)
new_lm_head_decoder = self.add_weight(
shape=(new_num_tokens, old_embedding_dim),
initializer="zeros",
trainable=True,
name=old_lm_head_decoder.name.split(":")[0],
)
init_decoder = tf.where(decoder_mask, current_decoder, new_lm_head_decoder.value())
new_lm_head_decoder.assign(init_decoder)
return new_lm_head_decoder
def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None) -> tf.Variable:
"""
Build a resized Embedding weights from a provided token Embedding weights. Increasing the size will add newly
initialized vectors at the end. Reducing the size will remove vectors from the end
Args:
old_embeddings (`tf.Variable`):
Old embeddings to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the embedding matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
`tf.Variable` module of the model without doing anything.
Return:
`tf.Variable`: Pointer to the resized Embedding Module or the old Embedding Module if `new_num_tokens` is
`None`
"""
# TODO (joao): flagged for replacement (by `_v2_get_resized_embeddings`) due to embeddings refactor
old_embedding_dim = shape_list(old_embeddings)[1]
init_range = getattr(self.config, "initializer_range", 0.02)
embeddings_mask, current_embeddings = init_copy_embeddings(old_embeddings, new_num_tokens)
new_embeddings = self.add_weight(
name=old_embeddings.name.split(":")[0],
shape=[new_num_tokens, old_embedding_dim],
initializer=get_initializer(init_range),
dtype=tf.float32,
)
init_embeddings = tf.where(embeddings_mask, current_embeddings, new_embeddings.value())
new_embeddings.assign(init_embeddings)
return new_embeddings
def _v2_get_resized_embeddings(
self, old_embeddings: tf.keras.layers.Embedding, new_num_tokens: int
) -> tf.keras.layers.Embedding:
"""
Build a resized Embedding layer from a provided Embedding layer. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end.
Args:
old_embeddings (`tf.keras.layers.Embedding`):
Old embeddings to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the embedding matrix.
Return:
`tf.keras.layers.Embedding`: Resized Embedding layer.
"""
# Get the initialization range for the embeddings
init_range = 0.02 # default value
potential_initialization_variable_names = [
"initializer_range", # most common
"initializer_factor", # e.g. T5
"init_std", # e.g BART
]
for var_name in potential_initialization_variable_names:
if hasattr(self.config, var_name):
init_range = getattr(self.config, var_name)
# Get a new (initialized) embeddings layer
new_embeddings = tf.keras.layers.Embedding(
input_dim=new_num_tokens,
output_dim=old_embeddings.output_dim,
embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=init_range),
name=old_embeddings.embeddings.name[:-13], # exact same scoped name except "/embeddings:0"
)
new_embeddings(tf.constant([[0]]))
# Copy the old embeddings to the new embeddings
if old_embeddings.input_dim >= new_num_tokens:
init_embeddings = old_embeddings.embeddings[:new_num_tokens]
else:
init_embeddings = tf.concat(
[old_embeddings.embeddings, new_embeddings.embeddings[old_embeddings.input_dim :]], axis=0
)
new_embeddings.embeddings.assign(init_embeddings)
return new_embeddings
def prune_heads(self, heads_to_prune):
"""
Prunes heads of the base model.
Arguments:
heads_to_prune (`Dict[int, List[int]]`):
Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
layer 1 and heads 2 and 3 on layer 2.
"""
raise NotImplementedError
def save_pretrained(
self,
save_directory,
saved_model=False,
version=1,
push_to_hub=False,
signatures=None,
max_shard_size: Union[int, str] = "10GB",
create_pr: bool = False,
safe_serialization: bool = False,
token: Optional[Union[str, bool]] = None,
**kwargs,
):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
[`~TFPreTrainedModel.from_pretrained`] class method.
Arguments:
save_directory (`str`):
Directory to which to save. Will be created if it doesn't exist.
saved_model (`bool`, *optional*, defaults to `False`):
If the model has to be saved in saved model format as well or not.
version (`int`, *optional*, defaults to 1):
The version of the saved model. A saved model needs to be versioned in order to be properly loaded by
TensorFlow Serving as detailed in the official documentation
https://www.tensorflow.org/tfx/serving/serving_basic
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
signatures (`dict` or `tf.function`, *optional*):
Model's signature used for serving. This will be passed to the `signatures` argument of model.save().
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
<Tip warning={true}>
If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
which will be bigger than `max_shard_size`.
</Tip>
create_pr (`bool`, *optional*, defaults to `False`):
Whether or not to create a PR with the uploaded files or directly commit.
safe_serialization (`bool`, *optional*, defaults to `False`):
Whether to save the model using `safetensors` or the traditional TensorFlow way (that uses `h5`).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if token is not None:
kwargs["token"] = token
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
if saved_model:
# If `torch_dtype` is in the config with a torch dtype class as the value, we need to change it to string.
# (Although TF doesn't care about this attribute, we can't just remove it or set it to `None`.)
if getattr(self.config, "torch_dtype", None) is not None and not isinstance(self.config.torch_dtype, str):
self.config.torch_dtype = str(self.config.torch_dtype).split(".")[1]
if signatures is None:
serving_default = self.serving.get_concrete_function(self.input_signature)
if any(spec.dtype == tf.int32 for spec in self.input_signature.values()):
int64_spec = {
key: tf.TensorSpec(
shape=spec.shape, dtype=tf.int64 if spec.dtype == tf.int32 else spec.dtype, name=spec.name
)
for key, spec in self.input_signature.items()
}
int64_serving = self.serving.get_concrete_function(int64_spec)
signatures = {"serving_default": serving_default, "int64_serving": int64_serving}
else:
signatures = serving_default
saved_model_dir = os.path.join(save_directory, "saved_model", str(version))
self.save(saved_model_dir, include_optimizer=False, signatures=signatures)
logger.info(f"Saved model created in {saved_model_dir}")
# Save configuration file
self.config.architectures = [self.__class__.__name__[2:]]
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
custom_object_save(self, save_directory, config=self.config)
self.config.save_pretrained(save_directory)
if self.can_generate():
self.generation_config.save_pretrained(save_directory)
# If we save using the predefined names, we can load using `from_pretrained`
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else TF2_WEIGHTS_NAME
output_model_file = os.path.join(save_directory, weights_name)
shards, index = tf_shard_checkpoint(self.weights, max_shard_size)
# Clean the folder from a previous save
for filename in os.listdir(save_directory):
full_filename = os.path.join(save_directory, filename)
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process
# in distributed settings to avoid race conditions.
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
if (
filename.startswith(weights_no_suffix)
and os.path.isfile(full_filename)
and filename not in shards.keys()
):
os.remove(full_filename)
if index is None:
if safe_serialization:
state_dict = {strip_model_name_and_prefix(w.name): w.value() for w in self.weights}
safe_save_file(state_dict, output_model_file, metadata={"format": "tf"})
else:
self.save_weights(output_model_file)
logger.info(f"Model weights saved in {output_model_file}")
else:
save_index_file = os.path.join(save_directory, TF2_WEIGHTS_INDEX_NAME)
# Save the index as well
with open(save_index_file, "w", encoding="utf-8") as index_file:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
index_file.write(content)
logger.info(
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
for shard_file, shard in shards.items():
with h5py.File(os.path.join(save_directory, shard_file), mode="w") as shard_file:
layers = []
for layer in sorted(shard, key=lambda x: x.name):
if "model." in layer.name or len(layer.name.split("/")) == 1:
layer_name = layer.name
else:
layer_name = "/".join(layer.name.split("/")[1:])
param_dset = shard_file.create_dataset(
layer_name, layer.numpy().shape, dtype=layer.numpy().dtype
)
param_dset[:] = layer.numpy()
layers.append(layer_name.encode("utf8"))
save_attributes_to_hdf5_group(shard_file, "layer_names", layers)
if push_to_hub:
self._upload_modified_files(
save_directory,
repo_id,
files_timestamps,
commit_message=commit_message,
token=token,
)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
**kwargs,
):
r"""
Instantiate a pretrained TF 2.0 model from a pre-trained model configuration.
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_name_or_path (`str`, *optional*):
Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
user or organization name, like `dbmdz/bert-base-german-cased`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
using the provided conversion scripts and loading the TensorFlow model afterwards.
- `None` if you are both providing the configuration and state dictionary (resp. with keyword
arguments `config` and `state_dict`).
model_args (sequence of positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
config (`Union[PretrainedConfig, str]`, *optional*):
Can be either:
- an instance of a class derived from [`PretrainedConfig`],
- a string valid as input to [`~PretrainedConfig.from_pretrained`].
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the *model id* string of a pretrained
model).
- The model was saved using [`~TFPreTrainedModel.save_pretrained`] and is reloaded by supplying the
save directory.
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
configuration JSON file named *config.json* is found in the directory.
from_pt (`bool`, *optional*, defaults to `False`):
Load the model weights from a PyTorch state_dict save file (see docstring of
`pretrained_model_name_or_path` argument).
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
checkpoint with 3 labels).
cache_dir (`str`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies:
(`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g.,
`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a
dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether or not to only look at local files (e.g., not try downloading the model).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
mirror (`str`, *optional*):
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
Please refer to the mirror site for more information.
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
tf_to_pt_weight_rename (`Callable`, *optional*):
A function that is called to transform the names of weights during the PyTorch to TensorFlow
crossloading process. This is not necessary for most models, but is useful to allow composite models to
be crossloaded correctly.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or
automatically loaded:
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the
underlying model's `__init__` method (we assume all relevant updates to the configuration have
already been done)
- If a configuration is not provided, `kwargs` will be first passed to the configuration class
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
corresponds to a configuration attribute will be used to override said attribute with the
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
will be passed to the underlying model's `__init__` function.
Examples:
```python
>>> from transformers import BertConfig, TFBertModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFBertModel.from_pretrained("bert-base-uncased")
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
>>> model = TFBertModel.from_pretrained("./test/saved_model/")
>>> # Update configuration during loading.
>>> model = TFBertModel.from_pretrained("bert-base-uncased", output_attentions=True)
>>> assert model.config.output_attentions == True
>>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable).
>>> config = BertConfig.from_json_file("./pt_model/my_pt_model_config.json")
>>> model = TFBertModel.from_pretrained("./pt_model/my_pytorch_model.bin", from_pt=True, config=config)
```"""
from_pt = kwargs.pop("from_pt", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
use_auth_token = kwargs.pop("use_auth_token", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
_ = kwargs.pop("mirror", None)
load_weight_prefix = kwargs.pop("load_weight_prefix", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
subfolder = kwargs.pop("subfolder", "")
commit_hash = kwargs.pop("_commit_hash", None)
tf_to_pt_weight_rename = kwargs.pop("tf_to_pt_weight_rename", None)
# Not relevant for TF models
_ = kwargs.pop("adapter_kwargs", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if trust_remote_code is True:
logger.warning(
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
" ignored."
)
user_agent = {"file_type": "model", "framework": "tensorflow", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
_from_auto=from_auto_class,
_from_pipeline=from_pipeline,
_commit_hash=commit_hash,
**kwargs,
)
else:
model_kwargs = kwargs
if commit_hash is None:
commit_hash = getattr(config, "_commit_hash", None)
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
# index of the files.
is_sharded = False
# Load model
if pretrained_model_name_or_path is not None:
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if is_local:
if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
# Load from a PyTorch checkpoint in priority if from_pt
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
elif from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)):
# Load from a sharded PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)
is_sharded = True
elif is_safetensors_available() and os.path.isfile(
os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME)
):
# Load from a safetensors checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME)
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
# Load from a TF 2.0 checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME)):
# Load from a sharded TF 2.0 checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME)
is_sharded = True
elif is_safetensors_available() and os.path.isfile(
os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
):
# Load from a sharded safetensors checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
is_sharded = True
raise NotImplementedError("Support for sharded checkpoints using safetensors is coming soon!")
# At this stage we don't have a weight file so we will raise an error.
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)) or os.path.isfile(
os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)
):
raise EnvironmentError(
f"Error no file named {TF2_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} "
"but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those "
"weights."
)
else:
raise EnvironmentError(
f"Error no file named {TF2_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory "
f"{pretrained_model_name_or_path}."
)
elif os.path.isfile(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
is_local = True
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
archive_file = pretrained_model_name_or_path + ".index"
is_local = True
elif is_remote_url(pretrained_model_name_or_path):
filename = pretrained_model_name_or_path
resolved_archive_file = download_url(pretrained_model_name_or_path)
else:
# set correct filename
if from_pt:
filename = WEIGHTS_NAME
elif is_safetensors_available():
filename = SAFE_WEIGHTS_NAME
else:
filename = TF2_WEIGHTS_NAME
try:
# Load from URL or cache if already cached
cached_file_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"proxies": proxies,
"resume_download": resume_download,
"local_files_only": local_files_only,
"token": token,
"user_agent": user_agent,
"revision": revision,
"subfolder": subfolder,
"_raise_exceptions_for_missing_entries": False,
"_commit_hash": commit_hash,
}
resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
# Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
# result when internet is up, the repo and revision exist, but the file does not.
if resolved_archive_file is None and filename == SAFE_WEIGHTS_NAME:
# Did not find the safetensors file, let's fallback to TF.
# No support for sharded safetensors yet, so we'll raise an error if that's all we find.
filename = TF2_WEIGHTS_NAME
resolved_archive_file = cached_file(
pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **cached_file_kwargs
)
if resolved_archive_file is None and filename == TF2_WEIGHTS_NAME:
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
resolved_archive_file = cached_file(
pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME, **cached_file_kwargs
)
if resolved_archive_file is not None:
is_sharded = True
if resolved_archive_file is None and filename == WEIGHTS_NAME:
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
resolved_archive_file = cached_file(
pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **cached_file_kwargs
)
if resolved_archive_file is not None:
is_sharded = True
if resolved_archive_file is None:
# Otherwise, maybe there is a PyTorch or Flax model file. We try those to give a helpful error
# message.
has_file_kwargs = {
"revision": revision,
"proxies": proxies,
"token": token,
}
if has_file(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME, **has_file_kwargs):
is_sharded = True
raise NotImplementedError(
"Support for sharded checkpoints using safetensors is coming soon!"
)
elif has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs):
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named"
f" {TF2_WEIGHTS_NAME} but there is a file for PyTorch weights. Use `from_pt=True` to"
" load this model from those weights."
)
else:
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME},"
f" {TF2_WEIGHTS_NAME} or {TF_WEIGHTS_NAME}"
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
# to the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
f" directory containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME} or {TF_WEIGHTS_NAME}"
)
if is_local:
logger.info(f"loading weights file {archive_file}")
resolved_archive_file = archive_file
filename = resolved_archive_file.split(os.path.sep)[-1]
else:
logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
else:
resolved_archive_file = None
# We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
if is_sharded:
# resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
resolved_archive_file, _ = get_checkpoint_shard_files(
pretrained_model_name_or_path,
resolved_archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
user_agent=user_agent,
revision=revision,
_commit_hash=commit_hash,
)
safetensors_from_pt = False
if filename == SAFE_WEIGHTS_NAME:
with safe_open(resolved_archive_file, framework="tf") as f:
safetensors_metadata = f.metadata()
if safetensors_metadata is None or safetensors_metadata.get("format") not in ["pt", "tf", "flax"]:
raise OSError(
f"The safetensors archive passed at {resolved_archive_file} does not contain the valid metadata."
" Make sure you save your model with the `save_pretrained` method."
)
safetensors_from_pt = safetensors_metadata.get("format") == "pt"
config.name_or_path = pretrained_model_name_or_path
# composed models, *e.g.* TFRag, require special treatment when it comes to loading
# pre-trained weights.
if cls._requires_load_weight_prefix and model_kwargs.get("name") is not None:
model_kwargs["load_weight_prefix"] = load_weight_prefix + "/" + model_kwargs.get("name")
# Instantiate model.
model = cls(config, *model_args, **model_kwargs)
if tf_to_pt_weight_rename is None and hasattr(model, "tf_to_pt_weight_rename"):
# TODO Matt: This is a temporary workaround to allow weight renaming, but requires a method
# to be defined for each class that requires a rename. We can probably just have a class-level
# dict and a single top-level method or something and cut down a lot of boilerplate code
tf_to_pt_weight_rename = model.tf_to_pt_weight_rename
if from_pt:
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model
# Load from a PyTorch checkpoint
return load_pytorch_checkpoint_in_tf2_model(
model,
resolved_archive_file,
allow_missing_keys=True,
output_loading_info=output_loading_info,
_prefix=load_weight_prefix,
tf_to_pt_weight_rename=tf_to_pt_weight_rename,
)
# we might need to extend the variable scope for composite models
if load_weight_prefix is not None:
with tf.compat.v1.variable_scope(load_weight_prefix):
model.build_in_name_scope() # build the network with dummy inputs
else:
model.build_in_name_scope() # build the network with dummy inputs
if safetensors_from_pt:
from .modeling_tf_pytorch_utils import load_pytorch_state_dict_in_tf2_model
with safe_open(resolved_archive_file, framework="tf") as safetensors_archive:
# Load from a PyTorch checkpoint
# We load in TF format here because PT weights often need to be transposed, and this is much
# faster on GPU. Loading as numpy and transposing on CPU adds several seconds to load times.
return load_pytorch_state_dict_in_tf2_model(
model,
safetensors_archive,
tf_inputs=False, # No need to build the model again
allow_missing_keys=True,
output_loading_info=output_loading_info,
_prefix=load_weight_prefix,
ignore_mismatched_sizes=ignore_mismatched_sizes,
tf_to_pt_weight_rename=tf_to_pt_weight_rename,
)
# 'by_name' allow us to do transfer learning by skipping/adding layers
# see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357
try:
if is_sharded:
for file in resolved_archive_file:
os.path.isfile(file), f"Error retrieving files {file}"
missing_keys, unexpected_keys, mismatched_keys = load_tf_sharded_weights(
model,
resolved_archive_file,
ignore_mismatched_sizes=ignore_mismatched_sizes,
_prefix=load_weight_prefix,
)
else:
missing_keys, unexpected_keys, mismatched_keys = load_tf_weights(
model,
resolved_archive_file,
ignore_mismatched_sizes=ignore_mismatched_sizes,
_prefix=load_weight_prefix,
)
except OSError as e:
try:
with open(resolved_archive_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please install "
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
"you cloned."
)
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise OSError(
"Unable to load weights from h5 file. "
"If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. "
)
if cls._keys_to_ignore_on_load_missing is not None:
for pat in cls._keys_to_ignore_on_load_missing:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some layers from the model checkpoint at {pretrained_model_name_or_path} were not used when"
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
" with another architecture (e.g. initializing a BertForSequenceClassification model from a"
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
logger.warning(f"All model checkpoint layers were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some layers of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
elif len(mismatched_keys) == 0:
logger.warning(
f"All the layers of {model.__class__.__name__} were initialized from the model checkpoint at"
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
" training."
)
if len(mismatched_keys) > 0:
mismatched_warning = "\n".join(
[
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
for key, shape1, shape2 in mismatched_keys
]
)
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
" to use it for predictions and inference."
)
# If it is a model with generation capabilities, attempt to load the generation config
if model.can_generate():
try:
model.generation_config = GenerationConfig.from_pretrained(
pretrained_model_name_or_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
_from_auto=from_auto_class,
_from_pipeline=from_pipeline,
**kwargs,
)
except OSError:
logger.info(
"Generation config file not found, using a generation config created from the model config."
)
pass
if output_loading_info:
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"mismatched_keys": mismatched_keys,
}
return model, loading_info
return model
def push_to_hub(
self,
repo_id: str,
use_temp_dir: Optional[bool] = None,
commit_message: Optional[str] = None,
private: Optional[bool] = None,
max_shard_size: Optional[Union[int, str]] = "10GB",
token: Optional[Union[bool, str]] = None,
# (`use_auth_token` is deprecated: we have to keep it here as we don't have **kwargs)
use_auth_token: Optional[Union[bool, str]] = None,
create_pr: bool = False,
**base_model_card_args,
) -> str:
"""
Upload the model files to the 🤗 Model Hub while synchronizing a local clone of the repo in `repo_path_or_name`.
Parameters:
repo_id (`str`):
The name of the repository you want to push your model to. It should contain your organization name
when pushing to a given organization.
use_temp_dir (`bool`, *optional*):
Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub.
Will default to `True` if there is no directory named like `repo_id`, `False` otherwise.
commit_message (`str`, *optional*):
Message to commit while pushing. Will default to `"Upload model"`.
private (`bool`, *optional*):
Whether or not the repository created should be private.
token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url`
is not specified.
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard
will then be each of size lower than this size. If expressed as a string, needs to be digits followed
by a unit (like `"5MB"`).
create_pr (`bool`, *optional*, defaults to `False`):
Whether or not to create a PR with the uploaded files or directly commit.
Examples:
```python
from transformers import TFAutoModel
model = TFAutoModel.from_pretrained("bert-base-cased")
# Push the model to your namespace with the name "my-finetuned-bert".
model.push_to_hub("my-finetuned-bert")
# Push the model to an organization with the name "my-finetuned-bert".
model.push_to_hub("huggingface/my-finetuned-bert")
```
"""
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if "repo_path_or_name" in base_model_card_args:
warnings.warn(
"The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use "
"`repo_id` instead."
)
repo_id = base_model_card_args.pop("repo_path_or_name")
# Deprecation warning will be sent after for repo_url and organization
repo_url = base_model_card_args.pop("repo_url", None)
organization = base_model_card_args.pop("organization", None)
if os.path.isdir(repo_id):
working_dir = repo_id
repo_id = repo_id.split(os.path.sep)[-1]
else:
working_dir = repo_id.split("/")[-1]
repo_id = self._create_repo(
repo_id, private=private, token=token, repo_url=repo_url, organization=organization
)
if use_temp_dir is None:
use_temp_dir = not os.path.isdir(working_dir)
with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir:
files_timestamps = self._get_files_timestamps(work_dir)
# Save all files.
self.save_pretrained(work_dir, max_shard_size=max_shard_size)
if hasattr(self, "history") and hasattr(self, "create_model_card"):
# This is a Keras model and we might be able to fish out its History and make a model card out of it
base_model_card_args = {
"output_dir": work_dir,
"model_name": Path(repo_id).name,
}
base_model_card_args.update(base_model_card_args)
self.create_model_card(**base_model_card_args)
self._upload_modified_files(
work_dir,
repo_id,
files_timestamps,
commit_message=commit_message,
token=token,
create_pr=create_pr,
)
@classmethod
def register_for_auto_class(cls, auto_class="TFAutoModel"):
"""
Register this class with a given auto class. This should only be used for custom models as the ones in the
library are already mapped with an auto class.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`):
The auto class to register this new model with.
"""
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f"{auto_class} is not a valid auto class.")
cls._auto_class = auto_class
class TFConv1D(tf.keras.layers.Layer):
"""
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
Basically works like a linear layer but the weights are transposed.
Args:
nf (`int`):
The number of output features.
nx (`int`):
The number of input features.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation to use to initialize the weights.
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
"""
def __init__(self, nf, nx, initializer_range=0.02, **kwargs):
super().__init__(**kwargs)
self.nf = nf
self.nx = nx
self.initializer_range = initializer_range
def build(self, input_shape):
if self.built:
return
self.built = True
self.weight = self.add_weight(
"weight", shape=[self.nx, self.nf], initializer=get_initializer(self.initializer_range)
)
self.bias = self.add_weight("bias", shape=[1, self.nf], initializer=tf.zeros_initializer())
def call(self, x):
bz, sl = shape_list(x)[:2]
x = tf.reshape(x, [-1, self.nx])
x = tf.matmul(x, self.weight) + self.bias
x = tf.reshape(x, [bz, sl, self.nf])
return x
class TFSharedEmbeddings(tf.keras.layers.Layer):
r"""
Construct shared token embeddings.
The weights of the embedding layer is usually shared with the weights of the linear decoder when doing language
modeling.
Args:
vocab_size (`int`):
The size of the vocabulary, e.g., the number of unique tokens.
hidden_size (`int`):
The size of the embedding vectors.
initializer_range (`float`, *optional*):
The standard deviation to use when initializing the weights. If no value is provided, it will default to
\\(1/\sqrt{hidden\_size}\\).
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
"""
# TODO (joao): flagged for delection due to embeddings refactor
def __init__(self, vocab_size: int, hidden_size: int, initializer_range: Optional[float] = None, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.initializer_range = hidden_size**-0.5 if initializer_range is None else initializer_range
warnings.warn(
"`TFSharedEmbeddings` is scheduled for deletion in v4.32, use `tf.keras.layers.Embedding` instead.",
DeprecationWarning,
)
def build(self, input_shape):
"""
Build shared token embedding layer Shared weights logic adapted from
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
"""
self.weight = self.add_weight(
"weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range)
)
super().build(input_shape)
def get_config(self):
config = {
"vocab_size": self.vocab_size,
"hidden_size": self.hidden_size,
"initializer_range": self.initializer_range,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs: tf.Tensor, mode: str = "embedding") -> tf.Tensor:
"""
Get token embeddings of inputs or decode final hidden state.
Args:
inputs (`tf.Tensor`):
In embedding mode, should be an int64 tensor with shape `[batch_size, length]`.
In linear mode, should be a float tensor with shape `[batch_size, length, hidden_size]`.
mode (`str`, defaults to `"embedding"`):
A valid value is either `"embedding"` or `"linear"`, the first one indicates that the layer should be
used as an embedding layer, the second one that the layer should be used as a linear decoder.
Returns:
`tf.Tensor`: In embedding mode, the output is a float32 embedding tensor, with shape `[batch_size, length,
embedding_size]`.
In linear mode, the output is a float32 with shape `[batch_size, length, vocab_size]`.
Raises:
ValueError: if `mode` is not valid.
Shared weights logic is adapted from
[here](https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24).
"""
if mode == "embedding":
return self._embedding(inputs)
elif mode == "linear":
return self._linear(inputs)
else:
raise ValueError(f"mode {mode} is not valid.")
def _embedding(self, input_ids):
"""Applies embedding based on inputs tensor."""
return tf.gather(self.weight, input_ids)
def _linear(self, inputs):
"""
Computes logits by running inputs through a linear layer.
Args:
inputs: A float32 tensor with shape [..., hidden_size]
Returns:
float32 tensor with shape [..., vocab_size].
"""
first_dims = shape_list(inputs)[:-1]
x = tf.reshape(inputs, [-1, self.hidden_size])
logits = tf.matmul(x, self.weight, transpose_b=True)
return tf.reshape(logits, first_dims + [self.vocab_size])
class TFSequenceSummary(tf.keras.layers.Layer):
"""
Compute a single vector summary of a sequence hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
config class of your model for the default values it uses):
- **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
- `"last"` -- Take the last token hidden state (like XLNet)
- `"first"` -- Take the first token hidden state (like Bert)
- `"mean"` -- Take the mean of all tokens hidden states
- `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
- `"attn"` -- Not implemented now, use multi-head attention
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
(otherwise to `config.hidden_size`).
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
another string or `None` will add no activation.
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
initializer_range (`float`, defaults to 0.02): The standard deviation to use to initialize the weights.
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
"""
def __init__(self, config: PretrainedConfig, initializer_range: float = 0.02, **kwargs):
super().__init__(**kwargs)
self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last"
if self.summary_type == "attn":
# We should use a standard multi-head attention module with absolute positional embedding for that.
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
raise NotImplementedError
self.has_summary = hasattr(config, "summary_use_proj") and config.summary_use_proj
if self.has_summary:
if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
num_classes = config.num_labels
else:
num_classes = config.hidden_size
self.summary = tf.keras.layers.Dense(
num_classes, kernel_initializer=get_initializer(initializer_range), name="summary"
)
self.has_activation = False
activation_string = getattr(config, "summary_activation", None)
if activation_string is not None:
self.has_activation = True
self.activation = get_tf_activation(activation_string)
self.has_first_dropout = hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0
if self.has_first_dropout:
self.first_dropout = tf.keras.layers.Dropout(config.summary_first_dropout)
self.has_last_dropout = hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0
if self.has_last_dropout:
self.last_dropout = tf.keras.layers.Dropout(config.summary_last_dropout)
self.hidden_size = config.hidden_size
def call(self, inputs, cls_index=None, training=False):
if not isinstance(inputs, (dict, tuple, list)):
hidden_states = inputs
elif isinstance(inputs, (tuple, list)):
hidden_states = inputs[0]
cls_index = inputs[1] if len(inputs) > 1 else None
assert len(inputs) <= 2, "Too many inputs."
else:
hidden_states = inputs.get("hidden_states")
cls_index = inputs.get("cls_index", None)
if self.summary_type == "last":
output = hidden_states[:, -1]
elif self.summary_type == "first":
output = hidden_states[:, 0]
elif self.summary_type == "mean":
output = tf.reduce_mean(hidden_states, axis=1)
elif self.summary_type == "cls_index":
hidden_shape = shape_list(hidden_states) # e.g. [batch, num choices, seq length, hidden dims]
if cls_index is None:
cls_index = tf.fill(
hidden_shape[:-2], hidden_shape[-2] - 1
) # A tensor full of shape [batch] or [batch, num choices] full of sequence length
cls_shape = shape_list(cls_index)
if len(cls_shape) <= len(hidden_shape) - 2:
cls_index = tf.expand_dims(cls_index, axis=-1)
# else:
# cls_index = cls_index[..., tf.newaxis]
# cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),))
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
output = tf.gather(hidden_states, cls_index, batch_dims=len(hidden_shape) - 2)
output = tf.squeeze(
output, axis=len(hidden_shape) - 2
) # shape of output: (batch, num choices, hidden_size)
elif self.summary_type == "attn":
raise NotImplementedError
if self.has_first_dropout:
output = self.first_dropout(output, training=training)
if self.has_summary:
output = self.summary(output)
if self.has_activation:
output = self.activation(output)
if self.has_last_dropout:
output = self.last_dropout(output, training=training)
return output
def build(self, input_shape):
if self.built:
return
self.built = True
if getattr(self, "summary", None) is not None:
with tf.name_scope("summary"):
self.summary.build(self.hidden_size)
def get_initializer(initializer_range: float = 0.02) -> tf.keras.initializers.TruncatedNormal:
"""
Creates a `tf.keras.initializers.TruncatedNormal` with the given range.
Args:
initializer_range (*float*, defaults to 0.02): Standard deviation of the initializer range.
Returns:
`tf.keras.initializers.TruncatedNormal`: The truncated normal initializer.
"""
return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)
|