Spaces:
Runtime error
Runtime error
File size: 49,438 Bytes
122057f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Config class."""
import importlib
import os
import re
import warnings
from collections import OrderedDict
from typing import List, Union
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...utils import CONFIG_NAME, logging
logger = logging.get_logger(__name__)
CONFIG_MAPPING_NAMES = OrderedDict(
[
# Add configs here
("albert", "AlbertConfig"),
("align", "AlignConfig"),
("altclip", "AltCLIPConfig"),
("audio-spectrogram-transformer", "ASTConfig"),
("autoformer", "AutoformerConfig"),
("bark", "BarkConfig"),
("bart", "BartConfig"),
("beit", "BeitConfig"),
("bert", "BertConfig"),
("bert-generation", "BertGenerationConfig"),
("big_bird", "BigBirdConfig"),
("bigbird_pegasus", "BigBirdPegasusConfig"),
("biogpt", "BioGptConfig"),
("bit", "BitConfig"),
("blenderbot", "BlenderbotConfig"),
("blenderbot-small", "BlenderbotSmallConfig"),
("blip", "BlipConfig"),
("blip-2", "Blip2Config"),
("bloom", "BloomConfig"),
("bridgetower", "BridgeTowerConfig"),
("bros", "BrosConfig"),
("camembert", "CamembertConfig"),
("canine", "CanineConfig"),
("chinese_clip", "ChineseCLIPConfig"),
("clap", "ClapConfig"),
("clip", "CLIPConfig"),
("clip_vision_model", "CLIPVisionConfig"),
("clipseg", "CLIPSegConfig"),
("clvp", "ClvpConfig"),
("code_llama", "LlamaConfig"),
("codegen", "CodeGenConfig"),
("conditional_detr", "ConditionalDetrConfig"),
("convbert", "ConvBertConfig"),
("convnext", "ConvNextConfig"),
("convnextv2", "ConvNextV2Config"),
("cpmant", "CpmAntConfig"),
("ctrl", "CTRLConfig"),
("cvt", "CvtConfig"),
("data2vec-audio", "Data2VecAudioConfig"),
("data2vec-text", "Data2VecTextConfig"),
("data2vec-vision", "Data2VecVisionConfig"),
("deberta", "DebertaConfig"),
("deberta-v2", "DebertaV2Config"),
("decision_transformer", "DecisionTransformerConfig"),
("deformable_detr", "DeformableDetrConfig"),
("deit", "DeiTConfig"),
("deta", "DetaConfig"),
("detr", "DetrConfig"),
("dinat", "DinatConfig"),
("dinov2", "Dinov2Config"),
("distilbert", "DistilBertConfig"),
("donut-swin", "DonutSwinConfig"),
("dpr", "DPRConfig"),
("dpt", "DPTConfig"),
("efficientformer", "EfficientFormerConfig"),
("efficientnet", "EfficientNetConfig"),
("electra", "ElectraConfig"),
("encodec", "EncodecConfig"),
("encoder-decoder", "EncoderDecoderConfig"),
("ernie", "ErnieConfig"),
("ernie_m", "ErnieMConfig"),
("esm", "EsmConfig"),
("falcon", "FalconConfig"),
("flaubert", "FlaubertConfig"),
("flava", "FlavaConfig"),
("fnet", "FNetConfig"),
("focalnet", "FocalNetConfig"),
("fsmt", "FSMTConfig"),
("funnel", "FunnelConfig"),
("fuyu", "FuyuConfig"),
("git", "GitConfig"),
("glpn", "GLPNConfig"),
("gpt-sw3", "GPT2Config"),
("gpt2", "GPT2Config"),
("gpt_bigcode", "GPTBigCodeConfig"),
("gpt_neo", "GPTNeoConfig"),
("gpt_neox", "GPTNeoXConfig"),
("gpt_neox_japanese", "GPTNeoXJapaneseConfig"),
("gptj", "GPTJConfig"),
("gptsan-japanese", "GPTSanJapaneseConfig"),
("graphormer", "GraphormerConfig"),
("groupvit", "GroupViTConfig"),
("hubert", "HubertConfig"),
("ibert", "IBertConfig"),
("idefics", "IdeficsConfig"),
("imagegpt", "ImageGPTConfig"),
("informer", "InformerConfig"),
("instructblip", "InstructBlipConfig"),
("jukebox", "JukeboxConfig"),
("kosmos-2", "Kosmos2Config"),
("layoutlm", "LayoutLMConfig"),
("layoutlmv2", "LayoutLMv2Config"),
("layoutlmv3", "LayoutLMv3Config"),
("led", "LEDConfig"),
("levit", "LevitConfig"),
("lilt", "LiltConfig"),
("llama", "LlamaConfig"),
("llava", "LlavaConfig"),
("longformer", "LongformerConfig"),
("longt5", "LongT5Config"),
("luke", "LukeConfig"),
("lxmert", "LxmertConfig"),
("m2m_100", "M2M100Config"),
("marian", "MarianConfig"),
("markuplm", "MarkupLMConfig"),
("mask2former", "Mask2FormerConfig"),
("maskformer", "MaskFormerConfig"),
("maskformer-swin", "MaskFormerSwinConfig"),
("mbart", "MBartConfig"),
("mctct", "MCTCTConfig"),
("mega", "MegaConfig"),
("megatron-bert", "MegatronBertConfig"),
("mgp-str", "MgpstrConfig"),
("mistral", "MistralConfig"),
("mixtral", "MixtralConfig"),
("mobilebert", "MobileBertConfig"),
("mobilenet_v1", "MobileNetV1Config"),
("mobilenet_v2", "MobileNetV2Config"),
("mobilevit", "MobileViTConfig"),
("mobilevitv2", "MobileViTV2Config"),
("mpnet", "MPNetConfig"),
("mpt", "MptConfig"),
("mra", "MraConfig"),
("mt5", "MT5Config"),
("musicgen", "MusicgenConfig"),
("mvp", "MvpConfig"),
("nat", "NatConfig"),
("nezha", "NezhaConfig"),
("nllb-moe", "NllbMoeConfig"),
("nougat", "VisionEncoderDecoderConfig"),
("nystromformer", "NystromformerConfig"),
("oneformer", "OneFormerConfig"),
("open-llama", "OpenLlamaConfig"),
("openai-gpt", "OpenAIGPTConfig"),
("opt", "OPTConfig"),
("owlv2", "Owlv2Config"),
("owlvit", "OwlViTConfig"),
("patchtsmixer", "PatchTSMixerConfig"),
("patchtst", "PatchTSTConfig"),
("pegasus", "PegasusConfig"),
("pegasus_x", "PegasusXConfig"),
("perceiver", "PerceiverConfig"),
("persimmon", "PersimmonConfig"),
("phi", "PhiConfig"),
("pix2struct", "Pix2StructConfig"),
("plbart", "PLBartConfig"),
("poolformer", "PoolFormerConfig"),
("pop2piano", "Pop2PianoConfig"),
("prophetnet", "ProphetNetConfig"),
("pvt", "PvtConfig"),
("qdqbert", "QDQBertConfig"),
("rag", "RagConfig"),
("realm", "RealmConfig"),
("reformer", "ReformerConfig"),
("regnet", "RegNetConfig"),
("rembert", "RemBertConfig"),
("resnet", "ResNetConfig"),
("retribert", "RetriBertConfig"),
("roberta", "RobertaConfig"),
("roberta-prelayernorm", "RobertaPreLayerNormConfig"),
("roc_bert", "RoCBertConfig"),
("roformer", "RoFormerConfig"),
("rwkv", "RwkvConfig"),
("sam", "SamConfig"),
("seamless_m4t", "SeamlessM4TConfig"),
("seamless_m4t_v2", "SeamlessM4Tv2Config"),
("segformer", "SegformerConfig"),
("sew", "SEWConfig"),
("sew-d", "SEWDConfig"),
("speech-encoder-decoder", "SpeechEncoderDecoderConfig"),
("speech_to_text", "Speech2TextConfig"),
("speech_to_text_2", "Speech2Text2Config"),
("speecht5", "SpeechT5Config"),
("splinter", "SplinterConfig"),
("squeezebert", "SqueezeBertConfig"),
("swiftformer", "SwiftFormerConfig"),
("swin", "SwinConfig"),
("swin2sr", "Swin2SRConfig"),
("swinv2", "Swinv2Config"),
("switch_transformers", "SwitchTransformersConfig"),
("t5", "T5Config"),
("table-transformer", "TableTransformerConfig"),
("tapas", "TapasConfig"),
("time_series_transformer", "TimeSeriesTransformerConfig"),
("timesformer", "TimesformerConfig"),
("timm_backbone", "TimmBackboneConfig"),
("trajectory_transformer", "TrajectoryTransformerConfig"),
("transfo-xl", "TransfoXLConfig"),
("trocr", "TrOCRConfig"),
("tvlt", "TvltConfig"),
("tvp", "TvpConfig"),
("umt5", "UMT5Config"),
("unispeech", "UniSpeechConfig"),
("unispeech-sat", "UniSpeechSatConfig"),
("univnet", "UnivNetConfig"),
("upernet", "UperNetConfig"),
("van", "VanConfig"),
("videomae", "VideoMAEConfig"),
("vilt", "ViltConfig"),
("vipllava", "VipLlavaConfig"),
("vision-encoder-decoder", "VisionEncoderDecoderConfig"),
("vision-text-dual-encoder", "VisionTextDualEncoderConfig"),
("visual_bert", "VisualBertConfig"),
("vit", "ViTConfig"),
("vit_hybrid", "ViTHybridConfig"),
("vit_mae", "ViTMAEConfig"),
("vit_msn", "ViTMSNConfig"),
("vitdet", "VitDetConfig"),
("vitmatte", "VitMatteConfig"),
("vits", "VitsConfig"),
("vivit", "VivitConfig"),
("wav2vec2", "Wav2Vec2Config"),
("wav2vec2-conformer", "Wav2Vec2ConformerConfig"),
("wavlm", "WavLMConfig"),
("whisper", "WhisperConfig"),
("xclip", "XCLIPConfig"),
("xglm", "XGLMConfig"),
("xlm", "XLMConfig"),
("xlm-prophetnet", "XLMProphetNetConfig"),
("xlm-roberta", "XLMRobertaConfig"),
("xlm-roberta-xl", "XLMRobertaXLConfig"),
("xlnet", "XLNetConfig"),
("xmod", "XmodConfig"),
("yolos", "YolosConfig"),
("yoso", "YosoConfig"),
]
)
CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
[
# Add archive maps here)
("albert", "ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("align", "ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("altclip", "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("audio-spectrogram-transformer", "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("autoformer", "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bark", "BARK_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bart", "BART_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("beit", "BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bert", "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("big_bird", "BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bigbird_pegasus", "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("biogpt", "BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bit", "BIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("blenderbot", "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("blenderbot-small", "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("blip", "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("blip-2", "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bloom", "BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bridgetower", "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bros", "BROS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("camembert", "CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("canine", "CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("chinese_clip", "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("clap", "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST"),
("clip", "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("clipseg", "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("clvp", "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("codegen", "CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("conditional_detr", "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("convbert", "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("convnext", "CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("convnextv2", "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("cpmant", "CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("ctrl", "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("cvt", "CVT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("data2vec-audio", "DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("data2vec-text", "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("data2vec-vision", "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("deberta", "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("deberta-v2", "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("deformable_detr", "DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("deit", "DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("deta", "DETA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("detr", "DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("dinat", "DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("dinov2", "DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("distilbert", "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("donut-swin", "DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("dpr", "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("dpt", "DPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("efficientformer", "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("efficientnet", "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("electra", "ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("encodec", "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("ernie", "ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("ernie_m", "ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("esm", "ESM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("falcon", "FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("flaubert", "FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("flava", "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("fnet", "FNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("focalnet", "FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("fsmt", "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("funnel", "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("fuyu", "FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("git", "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("glpn", "GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt2", "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt_bigcode", "GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt_neo", "GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt_neox", "GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt_neox_japanese", "GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gptj", "GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gptsan-japanese", "GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("graphormer", "GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("groupvit", "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("hubert", "HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("ibert", "IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("idefics", "IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("imagegpt", "IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("informer", "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("instructblip", "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("jukebox", "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("kosmos-2", "KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("layoutlm", "LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("layoutlmv2", "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("layoutlmv3", "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("led", "LED_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("levit", "LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("lilt", "LILT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("llama", "LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("llava", "LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("longformer", "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("longt5", "LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("luke", "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("lxmert", "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("m2m_100", "M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("markuplm", "MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mask2former", "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("maskformer", "MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mbart", "MBART_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mctct", "MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mega", "MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("megatron-bert", "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mgp-str", "MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mistral", "MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mixtral", "MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mobilenet_v1", "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mobilenet_v2", "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mobilevit", "MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mobilevitv2", "MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mpnet", "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mpt", "MPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mra", "MRA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("musicgen", "MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mvp", "MVP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("nat", "NAT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("nezha", "NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("nllb-moe", "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("nystromformer", "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("oneformer", "ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("open-llama", "OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("openai-gpt", "OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("opt", "OPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("owlv2", "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("owlvit", "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("patchtsmixer", "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("patchtst", "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pegasus_x", "PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("perceiver", "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("persimmon", "PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("phi", "PHI_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pix2struct", "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("plbart", "PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("poolformer", "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pop2piano", "POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("prophetnet", "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pvt", "PVT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("qdqbert", "QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("realm", "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("regnet", "REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("rembert", "REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("resnet", "RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("retribert", "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("roberta", "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("roberta-prelayernorm", "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("roc_bert", "ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("roformer", "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("rwkv", "RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("sam", "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("seamless_m4t", "SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("seamless_m4t_v2", "SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("segformer", "SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("sew", "SEW_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("sew-d", "SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("speech_to_text", "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("speech_to_text_2", "SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("speecht5", "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("splinter", "SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("squeezebert", "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("swiftformer", "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("swin", "SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("swin2sr", "SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("swinv2", "SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("switch_transformers", "SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("t5", "T5_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("table-transformer", "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("tapas", "TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("time_series_transformer", "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("timesformer", "TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("transfo-xl", "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("tvlt", "TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("tvp", "TVP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("unispeech", "UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("unispeech-sat", "UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("univnet", "UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("van", "VAN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("videomae", "VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vilt", "VILT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vipllava", "VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("visual_bert", "VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vit", "VIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vit_hybrid", "VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vit_mae", "VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vit_msn", "VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vitdet", "VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vitmatte", "VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vits", "VITS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vivit", "VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("wav2vec2", "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("wav2vec2-conformer", "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("whisper", "WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xclip", "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xglm", "XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlm", "XLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlm-prophetnet", "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlm-roberta", "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlnet", "XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xmod", "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("yolos", "YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("yoso", "YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
]
)
MODEL_NAMES_MAPPING = OrderedDict(
[
# Add full (and cased) model names here
("albert", "ALBERT"),
("align", "ALIGN"),
("altclip", "AltCLIP"),
("audio-spectrogram-transformer", "Audio Spectrogram Transformer"),
("autoformer", "Autoformer"),
("bark", "Bark"),
("bart", "BART"),
("barthez", "BARThez"),
("bartpho", "BARTpho"),
("beit", "BEiT"),
("bert", "BERT"),
("bert-generation", "Bert Generation"),
("bert-japanese", "BertJapanese"),
("bertweet", "BERTweet"),
("big_bird", "BigBird"),
("bigbird_pegasus", "BigBird-Pegasus"),
("biogpt", "BioGpt"),
("bit", "BiT"),
("blenderbot", "Blenderbot"),
("blenderbot-small", "BlenderbotSmall"),
("blip", "BLIP"),
("blip-2", "BLIP-2"),
("bloom", "BLOOM"),
("bort", "BORT"),
("bridgetower", "BridgeTower"),
("bros", "BROS"),
("byt5", "ByT5"),
("camembert", "CamemBERT"),
("canine", "CANINE"),
("chinese_clip", "Chinese-CLIP"),
("clap", "CLAP"),
("clip", "CLIP"),
("clip_vision_model", "CLIPVisionModel"),
("clipseg", "CLIPSeg"),
("clvp", "CLVP"),
("code_llama", "CodeLlama"),
("codegen", "CodeGen"),
("conditional_detr", "Conditional DETR"),
("convbert", "ConvBERT"),
("convnext", "ConvNeXT"),
("convnextv2", "ConvNeXTV2"),
("cpm", "CPM"),
("cpmant", "CPM-Ant"),
("ctrl", "CTRL"),
("cvt", "CvT"),
("data2vec-audio", "Data2VecAudio"),
("data2vec-text", "Data2VecText"),
("data2vec-vision", "Data2VecVision"),
("deberta", "DeBERTa"),
("deberta-v2", "DeBERTa-v2"),
("decision_transformer", "Decision Transformer"),
("deformable_detr", "Deformable DETR"),
("deit", "DeiT"),
("deplot", "DePlot"),
("deta", "DETA"),
("detr", "DETR"),
("dialogpt", "DialoGPT"),
("dinat", "DiNAT"),
("dinov2", "DINOv2"),
("distilbert", "DistilBERT"),
("dit", "DiT"),
("donut-swin", "DonutSwin"),
("dpr", "DPR"),
("dpt", "DPT"),
("efficientformer", "EfficientFormer"),
("efficientnet", "EfficientNet"),
("electra", "ELECTRA"),
("encodec", "EnCodec"),
("encoder-decoder", "Encoder decoder"),
("ernie", "ERNIE"),
("ernie_m", "ErnieM"),
("esm", "ESM"),
("falcon", "Falcon"),
("flan-t5", "FLAN-T5"),
("flan-ul2", "FLAN-UL2"),
("flaubert", "FlauBERT"),
("flava", "FLAVA"),
("fnet", "FNet"),
("focalnet", "FocalNet"),
("fsmt", "FairSeq Machine-Translation"),
("funnel", "Funnel Transformer"),
("fuyu", "Fuyu"),
("git", "GIT"),
("glpn", "GLPN"),
("gpt-sw3", "GPT-Sw3"),
("gpt2", "OpenAI GPT-2"),
("gpt_bigcode", "GPTBigCode"),
("gpt_neo", "GPT Neo"),
("gpt_neox", "GPT NeoX"),
("gpt_neox_japanese", "GPT NeoX Japanese"),
("gptj", "GPT-J"),
("gptsan-japanese", "GPTSAN-japanese"),
("graphormer", "Graphormer"),
("groupvit", "GroupViT"),
("herbert", "HerBERT"),
("hubert", "Hubert"),
("ibert", "I-BERT"),
("idefics", "IDEFICS"),
("imagegpt", "ImageGPT"),
("informer", "Informer"),
("instructblip", "InstructBLIP"),
("jukebox", "Jukebox"),
("kosmos-2", "KOSMOS-2"),
("layoutlm", "LayoutLM"),
("layoutlmv2", "LayoutLMv2"),
("layoutlmv3", "LayoutLMv3"),
("layoutxlm", "LayoutXLM"),
("led", "LED"),
("levit", "LeViT"),
("lilt", "LiLT"),
("llama", "LLaMA"),
("llama2", "Llama2"),
("llava", "LLaVa"),
("longformer", "Longformer"),
("longt5", "LongT5"),
("luke", "LUKE"),
("lxmert", "LXMERT"),
("m2m_100", "M2M100"),
("madlad-400", "MADLAD-400"),
("marian", "Marian"),
("markuplm", "MarkupLM"),
("mask2former", "Mask2Former"),
("maskformer", "MaskFormer"),
("maskformer-swin", "MaskFormerSwin"),
("matcha", "MatCha"),
("mbart", "mBART"),
("mbart50", "mBART-50"),
("mctct", "M-CTC-T"),
("mega", "MEGA"),
("megatron-bert", "Megatron-BERT"),
("megatron_gpt2", "Megatron-GPT2"),
("mgp-str", "MGP-STR"),
("mistral", "Mistral"),
("mixtral", "Mixtral"),
("mluke", "mLUKE"),
("mms", "MMS"),
("mobilebert", "MobileBERT"),
("mobilenet_v1", "MobileNetV1"),
("mobilenet_v2", "MobileNetV2"),
("mobilevit", "MobileViT"),
("mobilevitv2", "MobileViTV2"),
("mpnet", "MPNet"),
("mpt", "MPT"),
("mra", "MRA"),
("mt5", "MT5"),
("musicgen", "MusicGen"),
("mvp", "MVP"),
("nat", "NAT"),
("nezha", "Nezha"),
("nllb", "NLLB"),
("nllb-moe", "NLLB-MOE"),
("nougat", "Nougat"),
("nystromformer", "Nyströmformer"),
("oneformer", "OneFormer"),
("open-llama", "OpenLlama"),
("openai-gpt", "OpenAI GPT"),
("opt", "OPT"),
("owlv2", "OWLv2"),
("owlvit", "OWL-ViT"),
("patchtsmixer", "PatchTSMixer"),
("patchtst", "PatchTST"),
("pegasus", "Pegasus"),
("pegasus_x", "PEGASUS-X"),
("perceiver", "Perceiver"),
("persimmon", "Persimmon"),
("phi", "Phi"),
("phobert", "PhoBERT"),
("pix2struct", "Pix2Struct"),
("plbart", "PLBart"),
("poolformer", "PoolFormer"),
("pop2piano", "Pop2Piano"),
("prophetnet", "ProphetNet"),
("pvt", "PVT"),
("qdqbert", "QDQBert"),
("rag", "RAG"),
("realm", "REALM"),
("reformer", "Reformer"),
("regnet", "RegNet"),
("rembert", "RemBERT"),
("resnet", "ResNet"),
("retribert", "RetriBERT"),
("roberta", "RoBERTa"),
("roberta-prelayernorm", "RoBERTa-PreLayerNorm"),
("roc_bert", "RoCBert"),
("roformer", "RoFormer"),
("rwkv", "RWKV"),
("sam", "SAM"),
("seamless_m4t", "SeamlessM4T"),
("seamless_m4t_v2", "SeamlessM4Tv2"),
("segformer", "SegFormer"),
("sew", "SEW"),
("sew-d", "SEW-D"),
("speech-encoder-decoder", "Speech Encoder decoder"),
("speech_to_text", "Speech2Text"),
("speech_to_text_2", "Speech2Text2"),
("speecht5", "SpeechT5"),
("splinter", "Splinter"),
("squeezebert", "SqueezeBERT"),
("swiftformer", "SwiftFormer"),
("swin", "Swin Transformer"),
("swin2sr", "Swin2SR"),
("swinv2", "Swin Transformer V2"),
("switch_transformers", "SwitchTransformers"),
("t5", "T5"),
("t5v1.1", "T5v1.1"),
("table-transformer", "Table Transformer"),
("tapas", "TAPAS"),
("tapex", "TAPEX"),
("time_series_transformer", "Time Series Transformer"),
("timesformer", "TimeSformer"),
("timm_backbone", "TimmBackbone"),
("trajectory_transformer", "Trajectory Transformer"),
("transfo-xl", "Transformer-XL"),
("trocr", "TrOCR"),
("tvlt", "TVLT"),
("tvp", "TVP"),
("ul2", "UL2"),
("umt5", "UMT5"),
("unispeech", "UniSpeech"),
("unispeech-sat", "UniSpeechSat"),
("univnet", "UnivNet"),
("upernet", "UPerNet"),
("van", "VAN"),
("videomae", "VideoMAE"),
("vilt", "ViLT"),
("vipllava", "VipLlava"),
("vision-encoder-decoder", "Vision Encoder decoder"),
("vision-text-dual-encoder", "VisionTextDualEncoder"),
("visual_bert", "VisualBERT"),
("vit", "ViT"),
("vit_hybrid", "ViT Hybrid"),
("vit_mae", "ViTMAE"),
("vit_msn", "ViTMSN"),
("vitdet", "VitDet"),
("vitmatte", "ViTMatte"),
("vits", "VITS"),
("vivit", "ViViT"),
("wav2vec2", "Wav2Vec2"),
("wav2vec2-conformer", "Wav2Vec2-Conformer"),
("wav2vec2_phoneme", "Wav2Vec2Phoneme"),
("wavlm", "WavLM"),
("whisper", "Whisper"),
("xclip", "X-CLIP"),
("xglm", "XGLM"),
("xlm", "XLM"),
("xlm-prophetnet", "XLM-ProphetNet"),
("xlm-roberta", "XLM-RoBERTa"),
("xlm-roberta-xl", "XLM-RoBERTa-XL"),
("xlm-v", "XLM-V"),
("xlnet", "XLNet"),
("xls_r", "XLS-R"),
("xlsr_wav2vec2", "XLSR-Wav2Vec2"),
("xmod", "X-MOD"),
("yolos", "YOLOS"),
("yoso", "YOSO"),
]
)
# This is tied to the processing `-` -> `_` in `model_type_to_module_name`. For example, instead of putting
# `transfo-xl` (as in `CONFIG_MAPPING_NAMES`), we should use `transfo_xl`.
DEPRECATED_MODELS = [
"bort",
"mctct",
"mmbt",
"open_llama",
"retribert",
"tapex",
"trajectory_transformer",
"transfo_xl",
"van",
]
SPECIAL_MODEL_TYPE_TO_MODULE_NAME = OrderedDict(
[
("openai-gpt", "openai"),
("data2vec-audio", "data2vec"),
("data2vec-text", "data2vec"),
("data2vec-vision", "data2vec"),
("donut-swin", "donut"),
("kosmos-2", "kosmos2"),
("maskformer-swin", "maskformer"),
("xclip", "x_clip"),
("clip_vision_model", "clip"),
]
)
def model_type_to_module_name(key):
"""Converts a config key to the corresponding module."""
# Special treatment
if key in SPECIAL_MODEL_TYPE_TO_MODULE_NAME:
return SPECIAL_MODEL_TYPE_TO_MODULE_NAME[key]
key = key.replace("-", "_")
if key in DEPRECATED_MODELS:
key = f"deprecated.{key}"
return key
def config_class_to_model_type(config):
"""Converts a config class name to the corresponding model type"""
for key, cls in CONFIG_MAPPING_NAMES.items():
if cls == config:
return key
# if key not found check in extra content
for key, cls in CONFIG_MAPPING._extra_content.items():
if cls.__name__ == config:
return key
return None
class _LazyConfigMapping(OrderedDict):
"""
A dictionary that lazily load its values when they are requested.
"""
def __init__(self, mapping):
self._mapping = mapping
self._extra_content = {}
self._modules = {}
def __getitem__(self, key):
if key in self._extra_content:
return self._extra_content[key]
if key not in self._mapping:
raise KeyError(key)
value = self._mapping[key]
module_name = model_type_to_module_name(key)
if module_name not in self._modules:
self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models")
if hasattr(self._modules[module_name], value):
return getattr(self._modules[module_name], value)
# Some of the mappings have entries model_type -> config of another model type. In that case we try to grab the
# object at the top level.
transformers_module = importlib.import_module("transformers")
return getattr(transformers_module, value)
def keys(self):
return list(self._mapping.keys()) + list(self._extra_content.keys())
def values(self):
return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values())
def items(self):
return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items())
def __iter__(self):
return iter(list(self._mapping.keys()) + list(self._extra_content.keys()))
def __contains__(self, item):
return item in self._mapping or item in self._extra_content
def register(self, key, value, exist_ok=False):
"""
Register a new configuration in this mapping.
"""
if key in self._mapping.keys() and not exist_ok:
raise ValueError(f"'{key}' is already used by a Transformers config, pick another name.")
self._extra_content[key] = value
CONFIG_MAPPING = _LazyConfigMapping(CONFIG_MAPPING_NAMES)
class _LazyLoadAllMappings(OrderedDict):
"""
A mapping that will load all pairs of key values at the first access (either by indexing, requestions keys, values,
etc.)
Args:
mapping: The mapping to load.
"""
def __init__(self, mapping):
self._mapping = mapping
self._initialized = False
self._data = {}
def _initialize(self):
if self._initialized:
return
warnings.warn(
"ALL_PRETRAINED_CONFIG_ARCHIVE_MAP is deprecated and will be removed in v5 of Transformers. "
"It does not contain all available model checkpoints, far from it. Checkout hf.co/models for that.",
FutureWarning,
)
for model_type, map_name in self._mapping.items():
module_name = model_type_to_module_name(model_type)
module = importlib.import_module(f".{module_name}", "transformers.models")
mapping = getattr(module, map_name)
self._data.update(mapping)
self._initialized = True
def __getitem__(self, key):
self._initialize()
return self._data[key]
def keys(self):
self._initialize()
return self._data.keys()
def values(self):
self._initialize()
return self._data.values()
def items(self):
self._initialize()
return self._data.keys()
def __iter__(self):
self._initialize()
return iter(self._data)
def __contains__(self, item):
self._initialize()
return item in self._data
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = _LazyLoadAllMappings(CONFIG_ARCHIVE_MAP_MAPPING_NAMES)
def _get_class_name(model_class: Union[str, List[str]]):
if isinstance(model_class, (list, tuple)):
return " or ".join([f"[`{c}`]" for c in model_class if c is not None])
return f"[`{model_class}`]"
def _list_model_options(indent, config_to_class=None, use_model_types=True):
if config_to_class is None and not use_model_types:
raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.")
if use_model_types:
if config_to_class is None:
model_type_to_name = {model_type: f"[`{config}`]" for model_type, config in CONFIG_MAPPING_NAMES.items()}
else:
model_type_to_name = {
model_type: _get_class_name(model_class)
for model_type, model_class in config_to_class.items()
if model_type in MODEL_NAMES_MAPPING
}
lines = [
f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)"
for model_type in sorted(model_type_to_name.keys())
]
else:
config_to_name = {
CONFIG_MAPPING_NAMES[config]: _get_class_name(clas)
for config, clas in config_to_class.items()
if config in CONFIG_MAPPING_NAMES
}
config_to_model_name = {
config: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING_NAMES.items()
}
lines = [
f"{indent}- [`{config_name}`] configuration class:"
f" {config_to_name[config_name]} ({config_to_model_name[config_name]} model)"
for config_name in sorted(config_to_name.keys())
]
return "\n".join(lines)
def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True):
def docstring_decorator(fn):
docstrings = fn.__doc__
lines = docstrings.split("\n")
i = 0
while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None:
i += 1
if i < len(lines):
indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0]
if use_model_types:
indent = f"{indent} "
lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types)
docstrings = "\n".join(lines)
else:
raise ValueError(
f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current"
f" docstring is:\n{docstrings}"
)
fn.__doc__ = docstrings
return fn
return docstring_decorator
class AutoConfig:
r"""
This is a generic configuration class that will be instantiated as one of the configuration classes of the library
when created with the [`~AutoConfig.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoConfig is designed to be instantiated "
"using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
def for_model(cls, model_type: str, *args, **kwargs):
if model_type in CONFIG_MAPPING:
config_class = CONFIG_MAPPING[model_type]
return config_class(*args, **kwargs)
raise ValueError(
f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}"
)
@classmethod
@replace_list_option_in_docstrings()
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the configuration classes of the library from a pretrained model configuration.
The configuration class to instantiate is selected based on the `model_type` property of the config object that
is loaded, or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- A path to a *directory* containing a configuration file saved using the
[`~PretrainedConfig.save_pretrained`] method, or the [`~PreTrainedModel.save_pretrained`] method,
e.g., `./my_model_directory/`.
- A path or url to a saved configuration JSON *file*, e.g.,
`./my_model_directory/configuration.json`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download the model weights and configuration files and override the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final configuration object.
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs(additional keyword arguments, *optional*):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
Examples:
```python
>>> from transformers import AutoConfig
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained("bert-base-uncased")
>>> # Download configuration from huggingface.co (user-uploaded) and cache.
>>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased")
>>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*).
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/")
>>> # Load a specific configuration file.
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json")
>>> # Change some config attributes when loading a pretrained config.
>>> config = AutoConfig.from_pretrained("bert-base-uncased", output_attentions=True, foo=False)
>>> config.output_attentions
True
>>> config, unused_kwargs = AutoConfig.from_pretrained(
... "bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
... )
>>> config.output_attentions
True
>>> unused_kwargs
{'foo': False}
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
kwargs["_from_auto"] = True
kwargs["name_or_path"] = pretrained_model_name_or_path
trust_remote_code = kwargs.pop("trust_remote_code", None)
code_revision = kwargs.pop("code_revision", None)
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"]
has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
class_ref = config_dict["auto_map"]["AutoConfig"]
config_class = get_class_from_dynamic_module(
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs
)
if os.path.isdir(pretrained_model_name_or_path):
config_class.register_for_auto_class()
return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "model_type" in config_dict:
try:
config_class = CONFIG_MAPPING[config_dict["model_type"]]
except KeyError:
raise ValueError(
f"The checkpoint you are trying to load has model type `{config_dict['model_type']}` "
"but Transformers does not recognize this architecture. This could be because of an "
"issue with the checkpoint, or because your version of Transformers is out of date."
)
return config_class.from_dict(config_dict, **unused_kwargs)
else:
# Fallback: use pattern matching on the string.
# We go from longer names to shorter names to catch roberta before bert (for instance)
for pattern in sorted(CONFIG_MAPPING.keys(), key=len, reverse=True):
if pattern in str(pretrained_model_name_or_path):
return CONFIG_MAPPING[pattern].from_dict(config_dict, **unused_kwargs)
raise ValueError(
f"Unrecognized model in {pretrained_model_name_or_path}. "
f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings "
f"in its name: {', '.join(CONFIG_MAPPING.keys())}"
)
@staticmethod
def register(model_type, config, exist_ok=False):
"""
Register a new configuration for this class.
Args:
model_type (`str`): The model type like "bert" or "gpt".
config ([`PretrainedConfig`]): The config to register.
"""
if issubclass(config, PretrainedConfig) and config.model_type != model_type:
raise ValueError(
"The config you are passing has a `model_type` attribute that is not consistent with the model type "
f"you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they "
"match!"
)
CONFIG_MAPPING.register(model_type, config, exist_ok=exist_ok)
|