File size: 49,438 Bytes
122057f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Config class."""
import importlib
import os
import re
import warnings
from collections import OrderedDict
from typing import List, Union

from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...utils import CONFIG_NAME, logging


logger = logging.get_logger(__name__)

CONFIG_MAPPING_NAMES = OrderedDict(
    [
        # Add configs here
        ("albert", "AlbertConfig"),
        ("align", "AlignConfig"),
        ("altclip", "AltCLIPConfig"),
        ("audio-spectrogram-transformer", "ASTConfig"),
        ("autoformer", "AutoformerConfig"),
        ("bark", "BarkConfig"),
        ("bart", "BartConfig"),
        ("beit", "BeitConfig"),
        ("bert", "BertConfig"),
        ("bert-generation", "BertGenerationConfig"),
        ("big_bird", "BigBirdConfig"),
        ("bigbird_pegasus", "BigBirdPegasusConfig"),
        ("biogpt", "BioGptConfig"),
        ("bit", "BitConfig"),
        ("blenderbot", "BlenderbotConfig"),
        ("blenderbot-small", "BlenderbotSmallConfig"),
        ("blip", "BlipConfig"),
        ("blip-2", "Blip2Config"),
        ("bloom", "BloomConfig"),
        ("bridgetower", "BridgeTowerConfig"),
        ("bros", "BrosConfig"),
        ("camembert", "CamembertConfig"),
        ("canine", "CanineConfig"),
        ("chinese_clip", "ChineseCLIPConfig"),
        ("clap", "ClapConfig"),
        ("clip", "CLIPConfig"),
        ("clip_vision_model", "CLIPVisionConfig"),
        ("clipseg", "CLIPSegConfig"),
        ("clvp", "ClvpConfig"),
        ("code_llama", "LlamaConfig"),
        ("codegen", "CodeGenConfig"),
        ("conditional_detr", "ConditionalDetrConfig"),
        ("convbert", "ConvBertConfig"),
        ("convnext", "ConvNextConfig"),
        ("convnextv2", "ConvNextV2Config"),
        ("cpmant", "CpmAntConfig"),
        ("ctrl", "CTRLConfig"),
        ("cvt", "CvtConfig"),
        ("data2vec-audio", "Data2VecAudioConfig"),
        ("data2vec-text", "Data2VecTextConfig"),
        ("data2vec-vision", "Data2VecVisionConfig"),
        ("deberta", "DebertaConfig"),
        ("deberta-v2", "DebertaV2Config"),
        ("decision_transformer", "DecisionTransformerConfig"),
        ("deformable_detr", "DeformableDetrConfig"),
        ("deit", "DeiTConfig"),
        ("deta", "DetaConfig"),
        ("detr", "DetrConfig"),
        ("dinat", "DinatConfig"),
        ("dinov2", "Dinov2Config"),
        ("distilbert", "DistilBertConfig"),
        ("donut-swin", "DonutSwinConfig"),
        ("dpr", "DPRConfig"),
        ("dpt", "DPTConfig"),
        ("efficientformer", "EfficientFormerConfig"),
        ("efficientnet", "EfficientNetConfig"),
        ("electra", "ElectraConfig"),
        ("encodec", "EncodecConfig"),
        ("encoder-decoder", "EncoderDecoderConfig"),
        ("ernie", "ErnieConfig"),
        ("ernie_m", "ErnieMConfig"),
        ("esm", "EsmConfig"),
        ("falcon", "FalconConfig"),
        ("flaubert", "FlaubertConfig"),
        ("flava", "FlavaConfig"),
        ("fnet", "FNetConfig"),
        ("focalnet", "FocalNetConfig"),
        ("fsmt", "FSMTConfig"),
        ("funnel", "FunnelConfig"),
        ("fuyu", "FuyuConfig"),
        ("git", "GitConfig"),
        ("glpn", "GLPNConfig"),
        ("gpt-sw3", "GPT2Config"),
        ("gpt2", "GPT2Config"),
        ("gpt_bigcode", "GPTBigCodeConfig"),
        ("gpt_neo", "GPTNeoConfig"),
        ("gpt_neox", "GPTNeoXConfig"),
        ("gpt_neox_japanese", "GPTNeoXJapaneseConfig"),
        ("gptj", "GPTJConfig"),
        ("gptsan-japanese", "GPTSanJapaneseConfig"),
        ("graphormer", "GraphormerConfig"),
        ("groupvit", "GroupViTConfig"),
        ("hubert", "HubertConfig"),
        ("ibert", "IBertConfig"),
        ("idefics", "IdeficsConfig"),
        ("imagegpt", "ImageGPTConfig"),
        ("informer", "InformerConfig"),
        ("instructblip", "InstructBlipConfig"),
        ("jukebox", "JukeboxConfig"),
        ("kosmos-2", "Kosmos2Config"),
        ("layoutlm", "LayoutLMConfig"),
        ("layoutlmv2", "LayoutLMv2Config"),
        ("layoutlmv3", "LayoutLMv3Config"),
        ("led", "LEDConfig"),
        ("levit", "LevitConfig"),
        ("lilt", "LiltConfig"),
        ("llama", "LlamaConfig"),
        ("llava", "LlavaConfig"),
        ("longformer", "LongformerConfig"),
        ("longt5", "LongT5Config"),
        ("luke", "LukeConfig"),
        ("lxmert", "LxmertConfig"),
        ("m2m_100", "M2M100Config"),
        ("marian", "MarianConfig"),
        ("markuplm", "MarkupLMConfig"),
        ("mask2former", "Mask2FormerConfig"),
        ("maskformer", "MaskFormerConfig"),
        ("maskformer-swin", "MaskFormerSwinConfig"),
        ("mbart", "MBartConfig"),
        ("mctct", "MCTCTConfig"),
        ("mega", "MegaConfig"),
        ("megatron-bert", "MegatronBertConfig"),
        ("mgp-str", "MgpstrConfig"),
        ("mistral", "MistralConfig"),
        ("mixtral", "MixtralConfig"),
        ("mobilebert", "MobileBertConfig"),
        ("mobilenet_v1", "MobileNetV1Config"),
        ("mobilenet_v2", "MobileNetV2Config"),
        ("mobilevit", "MobileViTConfig"),
        ("mobilevitv2", "MobileViTV2Config"),
        ("mpnet", "MPNetConfig"),
        ("mpt", "MptConfig"),
        ("mra", "MraConfig"),
        ("mt5", "MT5Config"),
        ("musicgen", "MusicgenConfig"),
        ("mvp", "MvpConfig"),
        ("nat", "NatConfig"),
        ("nezha", "NezhaConfig"),
        ("nllb-moe", "NllbMoeConfig"),
        ("nougat", "VisionEncoderDecoderConfig"),
        ("nystromformer", "NystromformerConfig"),
        ("oneformer", "OneFormerConfig"),
        ("open-llama", "OpenLlamaConfig"),
        ("openai-gpt", "OpenAIGPTConfig"),
        ("opt", "OPTConfig"),
        ("owlv2", "Owlv2Config"),
        ("owlvit", "OwlViTConfig"),
        ("patchtsmixer", "PatchTSMixerConfig"),
        ("patchtst", "PatchTSTConfig"),
        ("pegasus", "PegasusConfig"),
        ("pegasus_x", "PegasusXConfig"),
        ("perceiver", "PerceiverConfig"),
        ("persimmon", "PersimmonConfig"),
        ("phi", "PhiConfig"),
        ("pix2struct", "Pix2StructConfig"),
        ("plbart", "PLBartConfig"),
        ("poolformer", "PoolFormerConfig"),
        ("pop2piano", "Pop2PianoConfig"),
        ("prophetnet", "ProphetNetConfig"),
        ("pvt", "PvtConfig"),
        ("qdqbert", "QDQBertConfig"),
        ("rag", "RagConfig"),
        ("realm", "RealmConfig"),
        ("reformer", "ReformerConfig"),
        ("regnet", "RegNetConfig"),
        ("rembert", "RemBertConfig"),
        ("resnet", "ResNetConfig"),
        ("retribert", "RetriBertConfig"),
        ("roberta", "RobertaConfig"),
        ("roberta-prelayernorm", "RobertaPreLayerNormConfig"),
        ("roc_bert", "RoCBertConfig"),
        ("roformer", "RoFormerConfig"),
        ("rwkv", "RwkvConfig"),
        ("sam", "SamConfig"),
        ("seamless_m4t", "SeamlessM4TConfig"),
        ("seamless_m4t_v2", "SeamlessM4Tv2Config"),
        ("segformer", "SegformerConfig"),
        ("sew", "SEWConfig"),
        ("sew-d", "SEWDConfig"),
        ("speech-encoder-decoder", "SpeechEncoderDecoderConfig"),
        ("speech_to_text", "Speech2TextConfig"),
        ("speech_to_text_2", "Speech2Text2Config"),
        ("speecht5", "SpeechT5Config"),
        ("splinter", "SplinterConfig"),
        ("squeezebert", "SqueezeBertConfig"),
        ("swiftformer", "SwiftFormerConfig"),
        ("swin", "SwinConfig"),
        ("swin2sr", "Swin2SRConfig"),
        ("swinv2", "Swinv2Config"),
        ("switch_transformers", "SwitchTransformersConfig"),
        ("t5", "T5Config"),
        ("table-transformer", "TableTransformerConfig"),
        ("tapas", "TapasConfig"),
        ("time_series_transformer", "TimeSeriesTransformerConfig"),
        ("timesformer", "TimesformerConfig"),
        ("timm_backbone", "TimmBackboneConfig"),
        ("trajectory_transformer", "TrajectoryTransformerConfig"),
        ("transfo-xl", "TransfoXLConfig"),
        ("trocr", "TrOCRConfig"),
        ("tvlt", "TvltConfig"),
        ("tvp", "TvpConfig"),
        ("umt5", "UMT5Config"),
        ("unispeech", "UniSpeechConfig"),
        ("unispeech-sat", "UniSpeechSatConfig"),
        ("univnet", "UnivNetConfig"),
        ("upernet", "UperNetConfig"),
        ("van", "VanConfig"),
        ("videomae", "VideoMAEConfig"),
        ("vilt", "ViltConfig"),
        ("vipllava", "VipLlavaConfig"),
        ("vision-encoder-decoder", "VisionEncoderDecoderConfig"),
        ("vision-text-dual-encoder", "VisionTextDualEncoderConfig"),
        ("visual_bert", "VisualBertConfig"),
        ("vit", "ViTConfig"),
        ("vit_hybrid", "ViTHybridConfig"),
        ("vit_mae", "ViTMAEConfig"),
        ("vit_msn", "ViTMSNConfig"),
        ("vitdet", "VitDetConfig"),
        ("vitmatte", "VitMatteConfig"),
        ("vits", "VitsConfig"),
        ("vivit", "VivitConfig"),
        ("wav2vec2", "Wav2Vec2Config"),
        ("wav2vec2-conformer", "Wav2Vec2ConformerConfig"),
        ("wavlm", "WavLMConfig"),
        ("whisper", "WhisperConfig"),
        ("xclip", "XCLIPConfig"),
        ("xglm", "XGLMConfig"),
        ("xlm", "XLMConfig"),
        ("xlm-prophetnet", "XLMProphetNetConfig"),
        ("xlm-roberta", "XLMRobertaConfig"),
        ("xlm-roberta-xl", "XLMRobertaXLConfig"),
        ("xlnet", "XLNetConfig"),
        ("xmod", "XmodConfig"),
        ("yolos", "YolosConfig"),
        ("yoso", "YosoConfig"),
    ]
)

CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
    [
        # Add archive maps here)
        ("albert", "ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("align", "ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("altclip", "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("audio-spectrogram-transformer", "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("autoformer", "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("bark", "BARK_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("bart", "BART_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("beit", "BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("bert", "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("big_bird", "BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("bigbird_pegasus", "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("biogpt", "BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("bit", "BIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("blenderbot", "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("blenderbot-small", "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("blip", "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("blip-2", "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("bloom", "BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("bridgetower", "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("bros", "BROS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("camembert", "CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("canine", "CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("chinese_clip", "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("clap", "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST"),
        ("clip", "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("clipseg", "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("clvp", "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("codegen", "CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("conditional_detr", "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("convbert", "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("convnext", "CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("convnextv2", "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("cpmant", "CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("ctrl", "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("cvt", "CVT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("data2vec-audio", "DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("data2vec-text", "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("data2vec-vision", "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("deberta", "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("deberta-v2", "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("deformable_detr", "DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("deit", "DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("deta", "DETA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("detr", "DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("dinat", "DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("dinov2", "DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("distilbert", "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("donut-swin", "DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("dpr", "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("dpt", "DPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("efficientformer", "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("efficientnet", "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("electra", "ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("encodec", "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("ernie", "ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("ernie_m", "ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("esm", "ESM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("falcon", "FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("flaubert", "FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("flava", "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("fnet", "FNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("focalnet", "FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("fsmt", "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("funnel", "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("fuyu", "FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("git", "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("glpn", "GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("gpt2", "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("gpt_bigcode", "GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("gpt_neo", "GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("gpt_neox", "GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("gpt_neox_japanese", "GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("gptj", "GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("gptsan-japanese", "GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("graphormer", "GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("groupvit", "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("hubert", "HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("ibert", "IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("idefics", "IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("imagegpt", "IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("informer", "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("instructblip", "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("jukebox", "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("kosmos-2", "KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("layoutlm", "LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("layoutlmv2", "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("layoutlmv3", "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("led", "LED_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("levit", "LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("lilt", "LILT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("llama", "LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("llava", "LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("longformer", "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("longt5", "LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("luke", "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("lxmert", "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("m2m_100", "M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("markuplm", "MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mask2former", "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("maskformer", "MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mbart", "MBART_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mctct", "MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mega", "MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("megatron-bert", "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mgp-str", "MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mistral", "MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mixtral", "MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mobilenet_v1", "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mobilenet_v2", "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mobilevit", "MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mobilevitv2", "MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mpnet", "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mpt", "MPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mra", "MRA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("musicgen", "MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("mvp", "MVP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("nat", "NAT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("nezha", "NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("nllb-moe", "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("nystromformer", "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("oneformer", "ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("open-llama", "OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("openai-gpt", "OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("opt", "OPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("owlv2", "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("owlvit", "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("patchtsmixer", "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("patchtst", "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("pegasus_x", "PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("perceiver", "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("persimmon", "PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("phi", "PHI_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("pix2struct", "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("plbart", "PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("poolformer", "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("pop2piano", "POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("prophetnet", "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("pvt", "PVT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("qdqbert", "QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("realm", "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("regnet", "REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("rembert", "REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("resnet", "RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("retribert", "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("roberta", "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("roberta-prelayernorm", "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("roc_bert", "ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("roformer", "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("rwkv", "RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("sam", "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("seamless_m4t", "SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("seamless_m4t_v2", "SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("segformer", "SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("sew", "SEW_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("sew-d", "SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("speech_to_text", "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("speech_to_text_2", "SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("speecht5", "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("splinter", "SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("squeezebert", "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("swiftformer", "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("swin", "SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("swin2sr", "SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("swinv2", "SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("switch_transformers", "SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("t5", "T5_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("table-transformer", "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("tapas", "TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("time_series_transformer", "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("timesformer", "TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("transfo-xl", "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("tvlt", "TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("tvp", "TVP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("unispeech", "UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("unispeech-sat", "UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("univnet", "UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("van", "VAN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("videomae", "VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vilt", "VILT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vipllava", "VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("visual_bert", "VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vit", "VIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vit_hybrid", "VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vit_mae", "VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vit_msn", "VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vitdet", "VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vitmatte", "VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vits", "VITS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("vivit", "VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("wav2vec2", "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("wav2vec2-conformer", "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("whisper", "WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("xclip", "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("xglm", "XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("xlm", "XLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("xlm-prophetnet", "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("xlm-roberta", "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("xlnet", "XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("xmod", "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("yolos", "YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
        ("yoso", "YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
    ]
)

MODEL_NAMES_MAPPING = OrderedDict(
    [
        # Add full (and cased) model names here
        ("albert", "ALBERT"),
        ("align", "ALIGN"),
        ("altclip", "AltCLIP"),
        ("audio-spectrogram-transformer", "Audio Spectrogram Transformer"),
        ("autoformer", "Autoformer"),
        ("bark", "Bark"),
        ("bart", "BART"),
        ("barthez", "BARThez"),
        ("bartpho", "BARTpho"),
        ("beit", "BEiT"),
        ("bert", "BERT"),
        ("bert-generation", "Bert Generation"),
        ("bert-japanese", "BertJapanese"),
        ("bertweet", "BERTweet"),
        ("big_bird", "BigBird"),
        ("bigbird_pegasus", "BigBird-Pegasus"),
        ("biogpt", "BioGpt"),
        ("bit", "BiT"),
        ("blenderbot", "Blenderbot"),
        ("blenderbot-small", "BlenderbotSmall"),
        ("blip", "BLIP"),
        ("blip-2", "BLIP-2"),
        ("bloom", "BLOOM"),
        ("bort", "BORT"),
        ("bridgetower", "BridgeTower"),
        ("bros", "BROS"),
        ("byt5", "ByT5"),
        ("camembert", "CamemBERT"),
        ("canine", "CANINE"),
        ("chinese_clip", "Chinese-CLIP"),
        ("clap", "CLAP"),
        ("clip", "CLIP"),
        ("clip_vision_model", "CLIPVisionModel"),
        ("clipseg", "CLIPSeg"),
        ("clvp", "CLVP"),
        ("code_llama", "CodeLlama"),
        ("codegen", "CodeGen"),
        ("conditional_detr", "Conditional DETR"),
        ("convbert", "ConvBERT"),
        ("convnext", "ConvNeXT"),
        ("convnextv2", "ConvNeXTV2"),
        ("cpm", "CPM"),
        ("cpmant", "CPM-Ant"),
        ("ctrl", "CTRL"),
        ("cvt", "CvT"),
        ("data2vec-audio", "Data2VecAudio"),
        ("data2vec-text", "Data2VecText"),
        ("data2vec-vision", "Data2VecVision"),
        ("deberta", "DeBERTa"),
        ("deberta-v2", "DeBERTa-v2"),
        ("decision_transformer", "Decision Transformer"),
        ("deformable_detr", "Deformable DETR"),
        ("deit", "DeiT"),
        ("deplot", "DePlot"),
        ("deta", "DETA"),
        ("detr", "DETR"),
        ("dialogpt", "DialoGPT"),
        ("dinat", "DiNAT"),
        ("dinov2", "DINOv2"),
        ("distilbert", "DistilBERT"),
        ("dit", "DiT"),
        ("donut-swin", "DonutSwin"),
        ("dpr", "DPR"),
        ("dpt", "DPT"),
        ("efficientformer", "EfficientFormer"),
        ("efficientnet", "EfficientNet"),
        ("electra", "ELECTRA"),
        ("encodec", "EnCodec"),
        ("encoder-decoder", "Encoder decoder"),
        ("ernie", "ERNIE"),
        ("ernie_m", "ErnieM"),
        ("esm", "ESM"),
        ("falcon", "Falcon"),
        ("flan-t5", "FLAN-T5"),
        ("flan-ul2", "FLAN-UL2"),
        ("flaubert", "FlauBERT"),
        ("flava", "FLAVA"),
        ("fnet", "FNet"),
        ("focalnet", "FocalNet"),
        ("fsmt", "FairSeq Machine-Translation"),
        ("funnel", "Funnel Transformer"),
        ("fuyu", "Fuyu"),
        ("git", "GIT"),
        ("glpn", "GLPN"),
        ("gpt-sw3", "GPT-Sw3"),
        ("gpt2", "OpenAI GPT-2"),
        ("gpt_bigcode", "GPTBigCode"),
        ("gpt_neo", "GPT Neo"),
        ("gpt_neox", "GPT NeoX"),
        ("gpt_neox_japanese", "GPT NeoX Japanese"),
        ("gptj", "GPT-J"),
        ("gptsan-japanese", "GPTSAN-japanese"),
        ("graphormer", "Graphormer"),
        ("groupvit", "GroupViT"),
        ("herbert", "HerBERT"),
        ("hubert", "Hubert"),
        ("ibert", "I-BERT"),
        ("idefics", "IDEFICS"),
        ("imagegpt", "ImageGPT"),
        ("informer", "Informer"),
        ("instructblip", "InstructBLIP"),
        ("jukebox", "Jukebox"),
        ("kosmos-2", "KOSMOS-2"),
        ("layoutlm", "LayoutLM"),
        ("layoutlmv2", "LayoutLMv2"),
        ("layoutlmv3", "LayoutLMv3"),
        ("layoutxlm", "LayoutXLM"),
        ("led", "LED"),
        ("levit", "LeViT"),
        ("lilt", "LiLT"),
        ("llama", "LLaMA"),
        ("llama2", "Llama2"),
        ("llava", "LLaVa"),
        ("longformer", "Longformer"),
        ("longt5", "LongT5"),
        ("luke", "LUKE"),
        ("lxmert", "LXMERT"),
        ("m2m_100", "M2M100"),
        ("madlad-400", "MADLAD-400"),
        ("marian", "Marian"),
        ("markuplm", "MarkupLM"),
        ("mask2former", "Mask2Former"),
        ("maskformer", "MaskFormer"),
        ("maskformer-swin", "MaskFormerSwin"),
        ("matcha", "MatCha"),
        ("mbart", "mBART"),
        ("mbart50", "mBART-50"),
        ("mctct", "M-CTC-T"),
        ("mega", "MEGA"),
        ("megatron-bert", "Megatron-BERT"),
        ("megatron_gpt2", "Megatron-GPT2"),
        ("mgp-str", "MGP-STR"),
        ("mistral", "Mistral"),
        ("mixtral", "Mixtral"),
        ("mluke", "mLUKE"),
        ("mms", "MMS"),
        ("mobilebert", "MobileBERT"),
        ("mobilenet_v1", "MobileNetV1"),
        ("mobilenet_v2", "MobileNetV2"),
        ("mobilevit", "MobileViT"),
        ("mobilevitv2", "MobileViTV2"),
        ("mpnet", "MPNet"),
        ("mpt", "MPT"),
        ("mra", "MRA"),
        ("mt5", "MT5"),
        ("musicgen", "MusicGen"),
        ("mvp", "MVP"),
        ("nat", "NAT"),
        ("nezha", "Nezha"),
        ("nllb", "NLLB"),
        ("nllb-moe", "NLLB-MOE"),
        ("nougat", "Nougat"),
        ("nystromformer", "Nyströmformer"),
        ("oneformer", "OneFormer"),
        ("open-llama", "OpenLlama"),
        ("openai-gpt", "OpenAI GPT"),
        ("opt", "OPT"),
        ("owlv2", "OWLv2"),
        ("owlvit", "OWL-ViT"),
        ("patchtsmixer", "PatchTSMixer"),
        ("patchtst", "PatchTST"),
        ("pegasus", "Pegasus"),
        ("pegasus_x", "PEGASUS-X"),
        ("perceiver", "Perceiver"),
        ("persimmon", "Persimmon"),
        ("phi", "Phi"),
        ("phobert", "PhoBERT"),
        ("pix2struct", "Pix2Struct"),
        ("plbart", "PLBart"),
        ("poolformer", "PoolFormer"),
        ("pop2piano", "Pop2Piano"),
        ("prophetnet", "ProphetNet"),
        ("pvt", "PVT"),
        ("qdqbert", "QDQBert"),
        ("rag", "RAG"),
        ("realm", "REALM"),
        ("reformer", "Reformer"),
        ("regnet", "RegNet"),
        ("rembert", "RemBERT"),
        ("resnet", "ResNet"),
        ("retribert", "RetriBERT"),
        ("roberta", "RoBERTa"),
        ("roberta-prelayernorm", "RoBERTa-PreLayerNorm"),
        ("roc_bert", "RoCBert"),
        ("roformer", "RoFormer"),
        ("rwkv", "RWKV"),
        ("sam", "SAM"),
        ("seamless_m4t", "SeamlessM4T"),
        ("seamless_m4t_v2", "SeamlessM4Tv2"),
        ("segformer", "SegFormer"),
        ("sew", "SEW"),
        ("sew-d", "SEW-D"),
        ("speech-encoder-decoder", "Speech Encoder decoder"),
        ("speech_to_text", "Speech2Text"),
        ("speech_to_text_2", "Speech2Text2"),
        ("speecht5", "SpeechT5"),
        ("splinter", "Splinter"),
        ("squeezebert", "SqueezeBERT"),
        ("swiftformer", "SwiftFormer"),
        ("swin", "Swin Transformer"),
        ("swin2sr", "Swin2SR"),
        ("swinv2", "Swin Transformer V2"),
        ("switch_transformers", "SwitchTransformers"),
        ("t5", "T5"),
        ("t5v1.1", "T5v1.1"),
        ("table-transformer", "Table Transformer"),
        ("tapas", "TAPAS"),
        ("tapex", "TAPEX"),
        ("time_series_transformer", "Time Series Transformer"),
        ("timesformer", "TimeSformer"),
        ("timm_backbone", "TimmBackbone"),
        ("trajectory_transformer", "Trajectory Transformer"),
        ("transfo-xl", "Transformer-XL"),
        ("trocr", "TrOCR"),
        ("tvlt", "TVLT"),
        ("tvp", "TVP"),
        ("ul2", "UL2"),
        ("umt5", "UMT5"),
        ("unispeech", "UniSpeech"),
        ("unispeech-sat", "UniSpeechSat"),
        ("univnet", "UnivNet"),
        ("upernet", "UPerNet"),
        ("van", "VAN"),
        ("videomae", "VideoMAE"),
        ("vilt", "ViLT"),
        ("vipllava", "VipLlava"),
        ("vision-encoder-decoder", "Vision Encoder decoder"),
        ("vision-text-dual-encoder", "VisionTextDualEncoder"),
        ("visual_bert", "VisualBERT"),
        ("vit", "ViT"),
        ("vit_hybrid", "ViT Hybrid"),
        ("vit_mae", "ViTMAE"),
        ("vit_msn", "ViTMSN"),
        ("vitdet", "VitDet"),
        ("vitmatte", "ViTMatte"),
        ("vits", "VITS"),
        ("vivit", "ViViT"),
        ("wav2vec2", "Wav2Vec2"),
        ("wav2vec2-conformer", "Wav2Vec2-Conformer"),
        ("wav2vec2_phoneme", "Wav2Vec2Phoneme"),
        ("wavlm", "WavLM"),
        ("whisper", "Whisper"),
        ("xclip", "X-CLIP"),
        ("xglm", "XGLM"),
        ("xlm", "XLM"),
        ("xlm-prophetnet", "XLM-ProphetNet"),
        ("xlm-roberta", "XLM-RoBERTa"),
        ("xlm-roberta-xl", "XLM-RoBERTa-XL"),
        ("xlm-v", "XLM-V"),
        ("xlnet", "XLNet"),
        ("xls_r", "XLS-R"),
        ("xlsr_wav2vec2", "XLSR-Wav2Vec2"),
        ("xmod", "X-MOD"),
        ("yolos", "YOLOS"),
        ("yoso", "YOSO"),
    ]
)

# This is tied to the processing `-` -> `_` in `model_type_to_module_name`. For example, instead of putting
# `transfo-xl` (as in `CONFIG_MAPPING_NAMES`), we should use `transfo_xl`.
DEPRECATED_MODELS = [
    "bort",
    "mctct",
    "mmbt",
    "open_llama",
    "retribert",
    "tapex",
    "trajectory_transformer",
    "transfo_xl",
    "van",
]

SPECIAL_MODEL_TYPE_TO_MODULE_NAME = OrderedDict(
    [
        ("openai-gpt", "openai"),
        ("data2vec-audio", "data2vec"),
        ("data2vec-text", "data2vec"),
        ("data2vec-vision", "data2vec"),
        ("donut-swin", "donut"),
        ("kosmos-2", "kosmos2"),
        ("maskformer-swin", "maskformer"),
        ("xclip", "x_clip"),
        ("clip_vision_model", "clip"),
    ]
)


def model_type_to_module_name(key):
    """Converts a config key to the corresponding module."""
    # Special treatment
    if key in SPECIAL_MODEL_TYPE_TO_MODULE_NAME:
        return SPECIAL_MODEL_TYPE_TO_MODULE_NAME[key]

    key = key.replace("-", "_")
    if key in DEPRECATED_MODELS:
        key = f"deprecated.{key}"

    return key


def config_class_to_model_type(config):
    """Converts a config class name to the corresponding model type"""
    for key, cls in CONFIG_MAPPING_NAMES.items():
        if cls == config:
            return key
    # if key not found check in extra content
    for key, cls in CONFIG_MAPPING._extra_content.items():
        if cls.__name__ == config:
            return key
    return None


class _LazyConfigMapping(OrderedDict):
    """
    A dictionary that lazily load its values when they are requested.
    """

    def __init__(self, mapping):
        self._mapping = mapping
        self._extra_content = {}
        self._modules = {}

    def __getitem__(self, key):
        if key in self._extra_content:
            return self._extra_content[key]
        if key not in self._mapping:
            raise KeyError(key)
        value = self._mapping[key]
        module_name = model_type_to_module_name(key)
        if module_name not in self._modules:
            self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models")
        if hasattr(self._modules[module_name], value):
            return getattr(self._modules[module_name], value)

        # Some of the mappings have entries model_type -> config of another model type. In that case we try to grab the
        # object at the top level.
        transformers_module = importlib.import_module("transformers")
        return getattr(transformers_module, value)

    def keys(self):
        return list(self._mapping.keys()) + list(self._extra_content.keys())

    def values(self):
        return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values())

    def items(self):
        return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items())

    def __iter__(self):
        return iter(list(self._mapping.keys()) + list(self._extra_content.keys()))

    def __contains__(self, item):
        return item in self._mapping or item in self._extra_content

    def register(self, key, value, exist_ok=False):
        """
        Register a new configuration in this mapping.
        """
        if key in self._mapping.keys() and not exist_ok:
            raise ValueError(f"'{key}' is already used by a Transformers config, pick another name.")
        self._extra_content[key] = value


CONFIG_MAPPING = _LazyConfigMapping(CONFIG_MAPPING_NAMES)


class _LazyLoadAllMappings(OrderedDict):
    """
    A mapping that will load all pairs of key values at the first access (either by indexing, requestions keys, values,
    etc.)

    Args:
        mapping: The mapping to load.
    """

    def __init__(self, mapping):
        self._mapping = mapping
        self._initialized = False
        self._data = {}

    def _initialize(self):
        if self._initialized:
            return
        warnings.warn(
            "ALL_PRETRAINED_CONFIG_ARCHIVE_MAP is deprecated and will be removed in v5 of Transformers. "
            "It does not contain all available model checkpoints, far from it. Checkout hf.co/models for that.",
            FutureWarning,
        )

        for model_type, map_name in self._mapping.items():
            module_name = model_type_to_module_name(model_type)
            module = importlib.import_module(f".{module_name}", "transformers.models")
            mapping = getattr(module, map_name)
            self._data.update(mapping)

        self._initialized = True

    def __getitem__(self, key):
        self._initialize()
        return self._data[key]

    def keys(self):
        self._initialize()
        return self._data.keys()

    def values(self):
        self._initialize()
        return self._data.values()

    def items(self):
        self._initialize()
        return self._data.keys()

    def __iter__(self):
        self._initialize()
        return iter(self._data)

    def __contains__(self, item):
        self._initialize()
        return item in self._data


ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = _LazyLoadAllMappings(CONFIG_ARCHIVE_MAP_MAPPING_NAMES)


def _get_class_name(model_class: Union[str, List[str]]):
    if isinstance(model_class, (list, tuple)):
        return " or ".join([f"[`{c}`]" for c in model_class if c is not None])
    return f"[`{model_class}`]"


def _list_model_options(indent, config_to_class=None, use_model_types=True):
    if config_to_class is None and not use_model_types:
        raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.")
    if use_model_types:
        if config_to_class is None:
            model_type_to_name = {model_type: f"[`{config}`]" for model_type, config in CONFIG_MAPPING_NAMES.items()}
        else:
            model_type_to_name = {
                model_type: _get_class_name(model_class)
                for model_type, model_class in config_to_class.items()
                if model_type in MODEL_NAMES_MAPPING
            }
        lines = [
            f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)"
            for model_type in sorted(model_type_to_name.keys())
        ]
    else:
        config_to_name = {
            CONFIG_MAPPING_NAMES[config]: _get_class_name(clas)
            for config, clas in config_to_class.items()
            if config in CONFIG_MAPPING_NAMES
        }
        config_to_model_name = {
            config: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING_NAMES.items()
        }
        lines = [
            f"{indent}- [`{config_name}`] configuration class:"
            f" {config_to_name[config_name]} ({config_to_model_name[config_name]} model)"
            for config_name in sorted(config_to_name.keys())
        ]
    return "\n".join(lines)


def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True):
    def docstring_decorator(fn):
        docstrings = fn.__doc__
        lines = docstrings.split("\n")
        i = 0
        while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None:
            i += 1
        if i < len(lines):
            indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0]
            if use_model_types:
                indent = f"{indent}    "
            lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types)
            docstrings = "\n".join(lines)
        else:
            raise ValueError(
                f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current"
                f" docstring is:\n{docstrings}"
            )
        fn.__doc__ = docstrings
        return fn

    return docstring_decorator


class AutoConfig:
    r"""
    This is a generic configuration class that will be instantiated as one of the configuration classes of the library
    when created with the [`~AutoConfig.from_pretrained`] class method.

    This class cannot be instantiated directly using `__init__()` (throws an error).
    """

    def __init__(self):
        raise EnvironmentError(
            "AutoConfig is designed to be instantiated "
            "using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method."
        )

    @classmethod
    def for_model(cls, model_type: str, *args, **kwargs):
        if model_type in CONFIG_MAPPING:
            config_class = CONFIG_MAPPING[model_type]
            return config_class(*args, **kwargs)
        raise ValueError(
            f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}"
        )

    @classmethod
    @replace_list_option_in_docstrings()
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r"""
        Instantiate one of the configuration classes of the library from a pretrained model configuration.

        The configuration class to instantiate is selected based on the `model_type` property of the config object that
        is loaded, or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:

        List options

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                Can be either:

                    - A string, the *model id* of a pretrained model configuration hosted inside a model repo on
                      huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
                      namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
                    - A path to a *directory* containing a configuration file saved using the
                      [`~PretrainedConfig.save_pretrained`] method, or the [`~PreTrainedModel.save_pretrained`] method,
                      e.g., `./my_model_directory/`.
                    - A path or url to a saved configuration JSON *file*, e.g.,
                      `./my_model_directory/configuration.json`.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download the model weights and configuration files and override the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                If `False`, then this function returns just the final configuration object.

                If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
                dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
                part of `kwargs` which has not been used to update `config` and is otherwise ignored.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
                should only be set to `True` for repositories you trust and in which you have read the code, as it will
                execute code present on the Hub on your local machine.
            kwargs(additional keyword arguments, *optional*):
                The values in kwargs of any keys which are configuration attributes will be used to override the loaded
                values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
                by the `return_unused_kwargs` keyword parameter.

        Examples:

        ```python
        >>> from transformers import AutoConfig

        >>> # Download configuration from huggingface.co and cache.
        >>> config = AutoConfig.from_pretrained("bert-base-uncased")

        >>> # Download configuration from huggingface.co (user-uploaded) and cache.
        >>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased")

        >>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*).
        >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/")

        >>> # Load a specific configuration file.
        >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json")

        >>> # Change some config attributes when loading a pretrained config.
        >>> config = AutoConfig.from_pretrained("bert-base-uncased", output_attentions=True, foo=False)
        >>> config.output_attentions
        True

        >>> config, unused_kwargs = AutoConfig.from_pretrained(
        ...     "bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
        ... )
        >>> config.output_attentions
        True

        >>> unused_kwargs
        {'foo': False}
        ```"""
        use_auth_token = kwargs.pop("use_auth_token", None)
        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
            )
            if kwargs.get("token", None) is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            kwargs["token"] = use_auth_token

        kwargs["_from_auto"] = True
        kwargs["name_or_path"] = pretrained_model_name_or_path
        trust_remote_code = kwargs.pop("trust_remote_code", None)
        code_revision = kwargs.pop("code_revision", None)

        config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
        has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"]
        has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING
        trust_remote_code = resolve_trust_remote_code(
            trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
        )

        if has_remote_code and trust_remote_code:
            class_ref = config_dict["auto_map"]["AutoConfig"]
            config_class = get_class_from_dynamic_module(
                class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs
            )
            if os.path.isdir(pretrained_model_name_or_path):
                config_class.register_for_auto_class()
            return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif "model_type" in config_dict:
            try:
                config_class = CONFIG_MAPPING[config_dict["model_type"]]
            except KeyError:
                raise ValueError(
                    f"The checkpoint you are trying to load has model type `{config_dict['model_type']}` "
                    "but Transformers does not recognize this architecture. This could be because of an "
                    "issue with the checkpoint, or because your version of Transformers is out of date."
                )
            return config_class.from_dict(config_dict, **unused_kwargs)
        else:
            # Fallback: use pattern matching on the string.
            # We go from longer names to shorter names to catch roberta before bert (for instance)
            for pattern in sorted(CONFIG_MAPPING.keys(), key=len, reverse=True):
                if pattern in str(pretrained_model_name_or_path):
                    return CONFIG_MAPPING[pattern].from_dict(config_dict, **unused_kwargs)

        raise ValueError(
            f"Unrecognized model in {pretrained_model_name_or_path}. "
            f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings "
            f"in its name: {', '.join(CONFIG_MAPPING.keys())}"
        )

    @staticmethod
    def register(model_type, config, exist_ok=False):
        """
        Register a new configuration for this class.

        Args:
            model_type (`str`): The model type like "bert" or "gpt".
            config ([`PretrainedConfig`]): The config to register.
        """
        if issubclass(config, PretrainedConfig) and config.model_type != model_type:
            raise ValueError(
                "The config you are passing has a `model_type` attribute that is not consistent with the model type "
                f"you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they "
                "match!"
            )
        CONFIG_MAPPING.register(model_type, config, exist_ok=exist_ok)