Spaces:
Runtime error
Runtime error
File size: 27,327 Bytes
122057f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities for the Trainer and TFTrainer class. Should be independent from PyTorch and TensorFlow.
"""
import copy
import functools
import gc
import inspect
import os
import random
import re
import threading
import time
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
from .utils import (
ExplicitEnum,
is_psutil_available,
is_tf_available,
is_torch_available,
is_torch_cuda_available,
is_torch_mps_available,
is_torch_npu_available,
is_torch_tpu_available,
is_torch_xpu_available,
requires_backends,
)
if is_torch_available():
import torch
def seed_worker(_):
"""
Helper function to set worker seed during Dataloader initialization.
"""
worker_seed = torch.initial_seed() % 2**32
set_seed(worker_seed)
def enable_full_determinism(seed: int, warn_only: bool = False):
"""
Helper function for reproducible behavior during distributed training. See
- https://pytorch.org/docs/stable/notes/randomness.html for pytorch
- https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism for tensorflow
"""
# set seed first
set_seed(seed)
if is_torch_available():
# Enable PyTorch deterministic mode. This potentially requires either the environment
# variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
# depending on the CUDA version, so we set them both here
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(True, warn_only=warn_only)
# Enable CUDNN deterministic mode
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if is_tf_available():
import tensorflow as tf
tf.config.experimental.enable_op_determinism()
def set_seed(seed: int):
"""
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch` and/or `tf` (if installed).
Args:
seed (`int`): The seed to set.
"""
random.seed(seed)
np.random.seed(seed)
if is_torch_available():
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ^^ safe to call this function even if cuda is not available
if is_torch_npu_available():
torch.npu.manual_seed_all(seed)
if is_torch_xpu_available():
torch.xpu.manual_seed_all(seed)
if is_tf_available():
import tensorflow as tf
tf.random.set_seed(seed)
def neftune_post_forward_hook(module, input, output):
"""
Implements the NEFTune forward pass for the model using forward hooks. Note this works only for torch.nn.Embedding
layers. This method is slightly adapted from the original source code that can be found here:
https://github.com/neelsjain/NEFTune Simply add it to your model as follows:
```python
model = ...
model.embed_tokens.neftune_noise_alpha = 0.1
model.embed_tokens.register_forward_hook(neftune_post_forward_hook)
```
Args:
module (`torch.nn.Module`):
The embedding module where the hook is attached. Note that you need to set `module.neftune_noise_alpha` to
the desired noise alpha value.
input (`torch.Tensor`):
The input tensor to the model.
output (`torch.Tensor`):
The output tensor of the model (i.e. the embeddings).
"""
if module.training:
dims = torch.tensor(output.size(1) * output.size(2))
mag_norm = module.neftune_noise_alpha / torch.sqrt(dims)
output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm)
return output
class EvalPrediction:
"""
Evaluation output (always contains labels), to be used to compute metrics.
Parameters:
predictions (`np.ndarray`): Predictions of the model.
label_ids (`np.ndarray`): Targets to be matched.
inputs (`np.ndarray`, *optional*):
"""
def __init__(
self,
predictions: Union[np.ndarray, Tuple[np.ndarray]],
label_ids: Union[np.ndarray, Tuple[np.ndarray]],
inputs: Optional[Union[np.ndarray, Tuple[np.ndarray]]] = None,
):
self.predictions = predictions
self.label_ids = label_ids
self.inputs = inputs
def __iter__(self):
if self.inputs is not None:
return iter((self.predictions, self.label_ids, self.inputs))
else:
return iter((self.predictions, self.label_ids))
def __getitem__(self, idx):
if idx < 0 or idx > 2:
raise IndexError("tuple index out of range")
if idx == 2 and self.inputs is None:
raise IndexError("tuple index out of range")
if idx == 0:
return self.predictions
elif idx == 1:
return self.label_ids
elif idx == 2:
return self.inputs
class EvalLoopOutput(NamedTuple):
predictions: Union[np.ndarray, Tuple[np.ndarray]]
label_ids: Optional[Union[np.ndarray, Tuple[np.ndarray]]]
metrics: Optional[Dict[str, float]]
num_samples: Optional[int]
class PredictionOutput(NamedTuple):
predictions: Union[np.ndarray, Tuple[np.ndarray]]
label_ids: Optional[Union[np.ndarray, Tuple[np.ndarray]]]
metrics: Optional[Dict[str, float]]
class TrainOutput(NamedTuple):
global_step: int
training_loss: float
metrics: Dict[str, float]
PREFIX_CHECKPOINT_DIR = "checkpoint"
_re_checkpoint = re.compile(r"^" + PREFIX_CHECKPOINT_DIR + r"\-(\d+)$")
def get_last_checkpoint(folder):
content = os.listdir(folder)
checkpoints = [
path
for path in content
if _re_checkpoint.search(path) is not None and os.path.isdir(os.path.join(folder, path))
]
if len(checkpoints) == 0:
return
return os.path.join(folder, max(checkpoints, key=lambda x: int(_re_checkpoint.search(x).groups()[0])))
class IntervalStrategy(ExplicitEnum):
NO = "no"
STEPS = "steps"
EPOCH = "epoch"
class EvaluationStrategy(ExplicitEnum):
NO = "no"
STEPS = "steps"
EPOCH = "epoch"
class HubStrategy(ExplicitEnum):
END = "end"
EVERY_SAVE = "every_save"
CHECKPOINT = "checkpoint"
ALL_CHECKPOINTS = "all_checkpoints"
class BestRun(NamedTuple):
"""
The best run found by a hyperparameter search (see [`~Trainer.hyperparameter_search`]).
Parameters:
run_id (`str`):
The id of the best run (if models were saved, the corresponding checkpoint will be in the folder ending
with run-{run_id}).
objective (`float`):
The objective that was obtained for this run.
hyperparameters (`Dict[str, Any]`):
The hyperparameters picked to get this run.
run_summary (`Optional[Any]`):
A summary of tuning experiments. `ray.tune.ExperimentAnalysis` object for Ray backend.
"""
run_id: str
objective: Union[float, List[float]]
hyperparameters: Dict[str, Any]
run_summary: Optional[Any] = None
def default_compute_objective(metrics: Dict[str, float]) -> float:
"""
The default objective to maximize/minimize when doing an hyperparameter search. It is the evaluation loss if no
metrics are provided to the [`Trainer`], the sum of all metrics otherwise.
Args:
metrics (`Dict[str, float]`): The metrics returned by the evaluate method.
Return:
`float`: The objective to minimize or maximize
"""
metrics = copy.deepcopy(metrics)
loss = metrics.pop("eval_loss", None)
_ = metrics.pop("epoch", None)
# Remove speed metrics
speed_metrics = [
m
for m in metrics.keys()
if m.endswith("_runtime") or m.endswith("_per_second") or m.endswith("_compilation_time")
]
for sm in speed_metrics:
_ = metrics.pop(sm, None)
return loss if len(metrics) == 0 else sum(metrics.values())
def default_hp_space_optuna(trial) -> Dict[str, float]:
from .integrations import is_optuna_available
assert is_optuna_available(), "This function needs Optuna installed: `pip install optuna`"
return {
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
"num_train_epochs": trial.suggest_int("num_train_epochs", 1, 5),
"seed": trial.suggest_int("seed", 1, 40),
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [4, 8, 16, 32, 64]),
}
def default_hp_space_ray(trial) -> Dict[str, float]:
from .integrations import is_ray_tune_available
assert is_ray_tune_available(), "This function needs ray installed: `pip install ray[tune]`"
from ray import tune
return {
"learning_rate": tune.loguniform(1e-6, 1e-4),
"num_train_epochs": tune.choice(list(range(1, 6))),
"seed": tune.uniform(1, 40),
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
}
def default_hp_space_sigopt(trial):
return [
{"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double", "transformamtion": "log"},
{"bounds": {"min": 1, "max": 6}, "name": "num_train_epochs", "type": "int"},
{"bounds": {"min": 1, "max": 40}, "name": "seed", "type": "int"},
{
"categorical_values": ["4", "8", "16", "32", "64"],
"name": "per_device_train_batch_size",
"type": "categorical",
},
]
def default_hp_space_wandb(trial) -> Dict[str, float]:
from .integrations import is_wandb_available
if not is_wandb_available():
raise ImportError("This function needs wandb installed: `pip install wandb`")
return {
"method": "random",
"metric": {"name": "objective", "goal": "minimize"},
"parameters": {
"learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
"num_train_epochs": {"distribution": "int_uniform", "min": 1, "max": 6},
"seed": {"distribution": "int_uniform", "min": 1, "max": 40},
"per_device_train_batch_size": {"values": [4, 8, 16, 32, 64]},
},
}
class HPSearchBackend(ExplicitEnum):
OPTUNA = "optuna"
RAY = "ray"
SIGOPT = "sigopt"
WANDB = "wandb"
def is_main_process(local_rank):
"""
Whether or not the current process is the local process, based on `xm.get_ordinal()` (for TPUs) first, then on
`local_rank`.
"""
if is_torch_tpu_available(check_device=True):
import torch_xla.core.xla_model as xm
return xm.get_ordinal() == 0
return local_rank in [-1, 0]
def total_processes_number(local_rank):
"""
Return the number of processes launched in parallel. Works with `torch.distributed` and TPUs.
"""
if is_torch_tpu_available(check_device=True):
import torch_xla.core.xla_model as xm
return xm.xrt_world_size()
elif local_rank != -1 and is_torch_available():
import torch
return torch.distributed.get_world_size()
return 1
def speed_metrics(split, start_time, num_samples=None, num_steps=None, num_tokens=None):
"""
Measure and return speed performance metrics.
This function requires a time snapshot `start_time` before the operation to be measured starts and this function
should be run immediately after the operation to be measured has completed.
Args:
- split: name to prefix metric (like train, eval, test...)
- start_time: operation start time
- num_samples: number of samples processed
- num_tokens: number of tokens processed
"""
runtime = time.time() - start_time
result = {f"{split}_runtime": round(runtime, 4)}
if runtime == 0:
return result
if num_samples is not None:
samples_per_second = num_samples / runtime
result[f"{split}_samples_per_second"] = round(samples_per_second, 3)
if num_steps is not None:
steps_per_second = num_steps / runtime
result[f"{split}_steps_per_second"] = round(steps_per_second, 3)
if num_tokens is not None:
tokens_per_second = num_tokens / runtime
result[f"{split}_tokens_per_second"] = round(tokens_per_second, 3)
return result
class SchedulerType(ExplicitEnum):
LINEAR = "linear"
COSINE = "cosine"
COSINE_WITH_RESTARTS = "cosine_with_restarts"
POLYNOMIAL = "polynomial"
CONSTANT = "constant"
CONSTANT_WITH_WARMUP = "constant_with_warmup"
INVERSE_SQRT = "inverse_sqrt"
REDUCE_ON_PLATEAU = "reduce_lr_on_plateau"
class TrainerMemoryTracker:
"""
A helper class that tracks cpu and gpu memory.
This class will silently skip unless `psutil` is available. Install with `pip install psutil`.
When a stage completes, it can pass metrics dict to update with the memory metrics gathered during this stage.
Example :
```python
self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
self._memory_tracker.start()
# code ...
metrics = {"train_runtime": 10.5}
self._memory_tracker.stop_and_update_metrics(metrics)
```
At the moment GPU tracking is only for `pytorch`, but can be extended to support `tensorflow`.
To understand this class' intricacies please read the documentation of [`~Trainer.log_metrics`].
"""
# map trainer methods to metrics prefix
stages = {
"__init__": "init",
"train": "train",
"_inner_training_loop": "train",
"evaluate": "eval",
"predict": "test",
}
def __init__(self, skip_memory_metrics=False):
self.skip_memory_metrics = skip_memory_metrics
if not is_psutil_available():
# soft dependency on psutil
self.skip_memory_metrics = True
if self.skip_memory_metrics:
return
import psutil # noqa
if is_torch_cuda_available():
import torch
self.torch = torch
self.gpu = {}
elif is_torch_mps_available():
import torch
self.torch = torch
self.gpu = {}
elif is_torch_xpu_available():
import torch
self.torch = torch
self.gpu = {}
elif is_torch_npu_available():
import torch
self.torch = torch
self.gpu = {}
else:
self.torch = None
self.process = psutil.Process()
self.cur_stage = None
self.cpu = {}
self.init_reported = False
def derive_stage(self):
"""derives the stage/caller name automatically"""
caller = inspect.currentframe().f_back.f_back.f_code.co_name
if caller in self.stages:
return self.stages[caller]
else:
raise ValueError(
f"was called from {caller}, but only expect to be called from one of {self.stages.keys()}"
)
def cpu_mem_used(self):
"""get resident set size memory for the current process"""
return self.process.memory_info().rss
def peak_monitor_func(self):
self.cpu_mem_used_peak = -1
while True:
self.cpu_mem_used_peak = max(self.cpu_mem_used(), self.cpu_mem_used_peak)
# can't sleep or will not catch the peak right (this comment is here on purpose)
# time.sleep(0.001) # 1msec
if not self.peak_monitoring:
break
def start(self):
"""start tracking for the caller's stage"""
if self.skip_memory_metrics:
return
stage = self.derive_stage()
# deal with nested calls of eval during train - simply ignore those
if self.cur_stage is not None and self.cur_stage != stage:
return
self.cur_stage = stage
gc.collect()
if self.torch is not None:
if torch.cuda.is_available():
self.torch.cuda.reset_peak_memory_stats()
self.torch.cuda.empty_cache()
elif is_torch_xpu_available():
self.torch.xpu.reset_peak_memory_stats()
self.torch.xpu.empty_cache()
elif is_torch_npu_available():
self.torch.npu.reset_peak_memory_stats()
self.torch.npu.empty_cache()
# gpu
if self.torch is not None:
if torch.cuda.is_available():
self.gpu_mem_used_at_start = self.torch.cuda.memory_allocated()
elif is_torch_xpu_available():
self.gpu_mem_used_at_start = self.torch.xpu.memory_allocated()
elif is_torch_npu_available():
self.gpu_mem_used_at_start = self.torch.npu.memory_allocated()
# cpu
self.cpu_mem_used_at_start = self.cpu_mem_used()
self.peak_monitoring = True
peak_monitor_thread = threading.Thread(target=self.peak_monitor_func)
peak_monitor_thread.daemon = True
peak_monitor_thread.start()
def stop(self, stage):
"""stop tracking for the passed stage"""
# deal with nested calls of eval during train - simply ignore those
if self.cur_stage is not None and self.cur_stage != stage:
return
# this sends a signal to peak_monitor_func to complete its loop
self.peak_monitoring = False
# first ensure all objects get collected and their memory is freed
gc.collect()
if self.torch is not None:
if torch.cuda.is_available():
self.torch.cuda.empty_cache()
elif is_torch_xpu_available():
self.torch.xpu.empty_cache()
elif is_torch_npu_available():
self.torch.npu.empty_cache()
# concepts:
# - alloc_delta: the difference of allocated memory between the end and the start
# - peaked_delta: the difference between the peak memory and the current memory
# in order to know how much memory the measured code consumed one needs to sum these two
# gpu
if self.torch is not None:
if torch.cuda.is_available():
self.gpu_mem_used_now = self.torch.cuda.memory_allocated()
self.gpu_mem_used_peak = self.torch.cuda.max_memory_allocated()
elif is_torch_xpu_available():
self.gpu_mem_used_now = self.torch.xpu.memory_allocated()
self.gpu_mem_used_peak = self.torch.xpu.max_memory_allocated()
elif is_torch_npu_available():
self.gpu_mem_used_now = self.torch.npu.memory_allocated()
self.gpu_mem_used_peak = self.torch.npu.max_memory_allocated()
else:
raise ValueError("No available GPU device found!")
self.gpu[self.cur_stage] = {
"begin": self.gpu_mem_used_at_start,
"end": self.gpu_mem_used_now,
"alloc": (self.gpu_mem_used_now - self.gpu_mem_used_at_start),
"peaked": max(0, self.gpu_mem_used_peak - self.gpu_mem_used_now),
}
# cpu
self.cpu_mem_used_now = self.cpu_mem_used()
self.cpu[self.cur_stage] = {
"begin": self.cpu_mem_used_at_start,
"end": self.cpu_mem_used_now,
"alloc": (self.cpu_mem_used_now - self.cpu_mem_used_at_start),
"peaked": max(0, self.cpu_mem_used_peak - self.cpu_mem_used_now),
}
# reset - cycle finished
self.cur_stage = None
def update_metrics(self, stage, metrics):
"""updates the metrics"""
if self.skip_memory_metrics:
return
# deal with nested calls of eval during train - simply ignore those
if self.cur_stage is not None and self.cur_stage != stage:
return
# since we don't have a way to return init metrics, we push them into the first of train/val/predict
stages = [stage]
if not self.init_reported:
stages.insert(0, "init")
self.init_reported = True
for stage in stages:
for t in ["alloc", "peaked"]:
if stage in self.cpu and t in self.cpu[stage]:
metrics[f"{stage}_mem_cpu_{t}_delta"] = self.cpu[stage][t]
if self.torch is not None and stage in self.gpu and t in self.gpu[stage]:
metrics[f"{stage}_mem_gpu_{t}_delta"] = self.gpu[stage][t]
# if we need additional debug info, enable the following
# for t in ["begin", "end"]:
# if stage in self.cpu and t in self.cpu[stage]:
# metrics[f"{stage}_mem_cpu_{t}"] = self.cpu[stage][t]
# if self.torch is not None and stage in self.gpu and t in self.gpu[stage]:
# metrics[f"{stage}_mem_gpu_{t}"] = self.gpu[stage][t]
# since memory can be allocated before init, and it might be difficult to track overall
# memory usage, in particular for GPU, let's report memory usage at the point init was called
if stages[0] == "init":
metrics["before_init_mem_cpu"] = self.cpu["init"]["begin"]
if self.torch is not None:
metrics["before_init_mem_gpu"] = self.gpu["init"]["begin"]
# if we also wanted to report any additional memory allocations in between init and
# whatever the next stage was we could also report this:
# if self.cpu["init"]["end"] != self.cpu[stage]["begin"]:
# metrics[f"after_init_mem_cpu_delta"] = self.cpu[stage]["begin"] - self.cpu["init"]["end"]
# if self.torch is not None and self.gpu["init"]["end"] != self.gpu[stage]["begin"]:
# metrics[f"after_init_mem_gpu_delta"] = self.gpu[stage]["begin"] - self.gpu["init"]["end"]
def stop_and_update_metrics(self, metrics=None):
"""combine stop and metrics update in one call for simpler code"""
if self.skip_memory_metrics:
return
stage = self.derive_stage()
self.stop(stage)
# init doesn't have metrics to update so we just save that data for later stages to retrieve
if metrics is not None:
self.update_metrics(stage, metrics)
def has_length(dataset):
"""
Checks if the dataset implements __len__() and it doesn't raise an error
"""
try:
return len(dataset) is not None
except TypeError:
# TypeError: len() of unsized object
return False
def denumpify_detensorize(metrics):
"""
Recursively calls `.item()` on the element of the dictionary passed
"""
if isinstance(metrics, (list, tuple)):
return type(metrics)(denumpify_detensorize(m) for m in metrics)
elif isinstance(metrics, dict):
return type(metrics)({k: denumpify_detensorize(v) for k, v in metrics.items()})
elif isinstance(metrics, np.generic):
return metrics.item()
elif is_torch_available() and isinstance(metrics, torch.Tensor) and metrics.numel() == 1:
return metrics.item()
return metrics
def number_of_arguments(func):
"""
Return the number of arguments of the passed function, even if it's a partial function.
"""
if isinstance(func, functools.partial):
total_args = len(inspect.signature(func.func).parameters)
return total_args - len(func.args) - len(func.keywords)
return len(inspect.signature(func).parameters)
def find_executable_batch_size(
function: callable = None, starting_batch_size: int = 128, auto_find_batch_size: bool = False
):
"""
Args:
A basic decorator that will try to execute `function`. If it fails from exceptions related to out-of-memory or
CUDNN, the batch size is cut in half and passed to `function`. `function` must take in a `batch_size` parameter as
its first argument.
function (`callable`, *optional*)
A function to wrap
starting_batch_size (`int`, *optional*)
The batch size to try and fit into memory
auto_find_batch_size (`bool`, *optional*)
If False, will just execute `function`
"""
if function is None:
return functools.partial(
find_executable_batch_size,
starting_batch_size=starting_batch_size,
auto_find_batch_size=auto_find_batch_size,
)
if auto_find_batch_size:
requires_backends(find_executable_batch_size, "accelerate")
from accelerate.utils import find_executable_batch_size as accelerate_find_executable_batch_size
return accelerate_find_executable_batch_size(function=function, starting_batch_size=starting_batch_size)
return functools.partial(function, batch_size=starting_batch_size)
class FSDPOption(ExplicitEnum):
FULL_SHARD = "full_shard"
SHARD_GRAD_OP = "shard_grad_op"
NO_SHARD = "no_shard"
HYBRID_SHARD = "hybrid_shard"
HYBRID_SHARD_ZERO2 = "hybrid_shard_zero2"
OFFLOAD = "offload"
AUTO_WRAP = "auto_wrap"
class RemoveColumnsCollator:
"""Wrap the data collator to remove unused columns before they are passed to the collator."""
def __init__(
self,
data_collator,
signature_columns,
logger=None,
model_name: Optional[str] = None,
description: Optional[str] = None,
):
self.data_collator = data_collator
self.signature_columns = signature_columns
self.logger = logger
self.description = description
self.model_name = model_name
self.message_logged = False
def _remove_columns(self, feature: dict) -> dict:
if not isinstance(feature, dict):
return feature
if not self.message_logged and self.logger and self.model_name:
ignored_columns = list(set(feature.keys()) - set(self.signature_columns))
if len(ignored_columns) > 0:
dset_description = "" if self.description is None else f"in the {self.description} set"
self.logger.info(
f"The following columns {dset_description} don't have a corresponding argument in "
f"`{self.model_name}.forward` and have been ignored: {', '.join(ignored_columns)}."
f" If {', '.join(ignored_columns)} are not expected by `{self.model_name}.forward`, "
" you can safely ignore this message."
)
self.message_logged = True
return {k: v for k, v in feature.items() if k in self.signature_columns}
def __call__(self, features: List[dict]):
features = [self._remove_columns(feature) for feature in features]
return self.data_collator(features)
|