TinyGPT-V / modified /utils /backbone_utils.py
Li Zhaoxu
init
122057f
raw
history blame
12 kB
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Collection of utils to be used by backbones and their components."""
import enum
import inspect
from typing import Iterable, List, Optional, Tuple, Union
class BackboneType(enum.Enum):
TIMM = "timm"
TRANSFORMERS = "transformers"
def verify_out_features_out_indices(
out_features: Optional[Iterable[str]], out_indices: Optional[Iterable[int]], stage_names: Optional[Iterable[str]]
):
"""
Verify that out_indices and out_features are valid for the given stage_names.
"""
if stage_names is None:
raise ValueError("Stage_names must be set for transformers backbones")
if out_features is not None:
if not isinstance(out_features, (list,)):
raise ValueError(f"out_features must be a list {type(out_features)}")
if any(feat not in stage_names for feat in out_features):
raise ValueError(f"out_features must be a subset of stage_names: {stage_names} got {out_features}")
if out_indices is not None:
if not isinstance(out_indices, (list, tuple)):
raise ValueError(f"out_indices must be a list or tuple, got {type(out_indices)}")
if any(idx >= len(stage_names) for idx in out_indices):
raise ValueError(f"out_indices must be valid indices for stage_names {stage_names}, got {out_indices}")
if out_features is not None and out_indices is not None:
if len(out_features) != len(out_indices):
raise ValueError("out_features and out_indices should have the same length if both are set")
if out_features != [stage_names[idx] for idx in out_indices]:
raise ValueError("out_features and out_indices should correspond to the same stages if both are set")
def _align_output_features_output_indices(
out_features: Optional[List[str]],
out_indices: Optional[Union[List[int], Tuple[int]]],
stage_names: List[str],
):
"""
Finds the corresponding `out_features` and `out_indices` for the given `stage_names`.
The logic is as follows:
- `out_features` not set, `out_indices` set: `out_features` is set to the `out_features` corresponding to the
`out_indices`.
- `out_indices` not set, `out_features` set: `out_indices` is set to the `out_indices` corresponding to the
`out_features`.
- `out_indices` and `out_features` not set: `out_indices` and `out_features` are set to the last stage.
- `out_indices` and `out_features` set: input `out_indices` and `out_features` are returned.
Args:
out_features (`List[str]`): The names of the features for the backbone to output.
out_indices (`List[int]` or `Tuple[int]`): The indices of the features for the backbone to output.
stage_names (`List[str]`): The names of the stages of the backbone.
"""
if out_indices is None and out_features is None:
out_indices = [len(stage_names) - 1]
out_features = [stage_names[-1]]
elif out_indices is None and out_features is not None:
out_indices = [stage_names.index(layer) for layer in out_features]
elif out_features is None and out_indices is not None:
out_features = [stage_names[idx] for idx in out_indices]
return out_features, out_indices
def get_aligned_output_features_output_indices(
out_features: Optional[List[str]],
out_indices: Optional[Union[List[int], Tuple[int]]],
stage_names: List[str],
) -> Tuple[List[str], List[int]]:
"""
Get the `out_features` and `out_indices` so that they are aligned.
The logic is as follows:
- `out_features` not set, `out_indices` set: `out_features` is set to the `out_features` corresponding to the
`out_indices`.
- `out_indices` not set, `out_features` set: `out_indices` is set to the `out_indices` corresponding to the
`out_features`.
- `out_indices` and `out_features` not set: `out_indices` and `out_features` are set to the last stage.
- `out_indices` and `out_features` set: they are verified to be aligned.
Args:
out_features (`List[str]`): The names of the features for the backbone to output.
out_indices (`List[int]` or `Tuple[int]`): The indices of the features for the backbone to output.
stage_names (`List[str]`): The names of the stages of the backbone.
"""
# First verify that the out_features and out_indices are valid
verify_out_features_out_indices(out_features=out_features, out_indices=out_indices, stage_names=stage_names)
output_features, output_indices = _align_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=stage_names
)
# Verify that the aligned out_features and out_indices are valid
verify_out_features_out_indices(out_features=output_features, out_indices=output_indices, stage_names=stage_names)
return output_features, output_indices
class BackboneMixin:
backbone_type: Optional[BackboneType] = None
def _init_timm_backbone(self, config) -> None:
"""
Initialize the backbone model from timm The backbone must already be loaded to self._backbone
"""
if getattr(self, "_backbone", None) is None:
raise ValueError("self._backbone must be set before calling _init_timm_backbone")
# These will diagree with the defaults for the transformers models e.g. for resnet50
# the transformer model has out_features = ['stem', 'stage1', 'stage2', 'stage3', 'stage4']
# the timm model has out_features = ['act', 'layer1', 'layer2', 'layer3', 'layer4']
self.stage_names = [stage["module"] for stage in self._backbone.feature_info.info]
self.num_features = [stage["num_chs"] for stage in self._backbone.feature_info.info]
out_indices = self._backbone.feature_info.out_indices
out_features = self._backbone.feature_info.module_name()
# We verify the out indices and out features are valid
verify_out_features_out_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
self._out_features, self._out_indices = out_features, out_indices
def _init_transformers_backbone(self, config) -> None:
stage_names = getattr(config, "stage_names")
out_features = getattr(config, "out_features", None)
out_indices = getattr(config, "out_indices", None)
self.stage_names = stage_names
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=stage_names
)
# Number of channels for each stage. This is set in the transformer backbone model init
self.num_features = None
def _init_backbone(self, config) -> None:
"""
Method to initialize the backbone. This method is called by the constructor of the base class after the
pretrained model weights have been loaded.
"""
self.config = config
self.use_timm_backbone = getattr(config, "use_timm_backbone", False)
self.backbone_type = BackboneType.TIMM if self.use_timm_backbone else BackboneType.TRANSFORMERS
if self.backbone_type == BackboneType.TIMM:
self._init_timm_backbone(config)
elif self.backbone_type == BackboneType.TRANSFORMERS:
self._init_transformers_backbone(config)
else:
raise ValueError(f"backbone_type {self.backbone_type} not supported.")
@property
def out_features(self):
return self._out_features
@out_features.setter
def out_features(self, out_features: List[str]):
"""
Set the out_features attribute. This will also update the out_indices attribute to match the new out_features.
"""
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=None, stage_names=self.stage_names
)
@property
def out_indices(self):
return self._out_indices
@out_indices.setter
def out_indices(self, out_indices: Union[Tuple[int], List[int]]):
"""
Set the out_indices attribute. This will also update the out_features attribute to match the new out_indices.
"""
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=None, out_indices=out_indices, stage_names=self.stage_names
)
@property
def out_feature_channels(self):
# the current backbones will output the number of channels for each stage
# even if that stage is not in the out_features list.
return {stage: self.num_features[i] for i, stage in enumerate(self.stage_names)}
@property
def channels(self):
return [self.out_feature_channels[name] for name in self.out_features]
def forward_with_filtered_kwargs(self, *args, **kwargs):
signature = dict(inspect.signature(self.forward).parameters)
filtered_kwargs = {k: v for k, v in kwargs.items() if k in signature}
return self(*args, **filtered_kwargs)
def forward(
self,
pixel_values,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
raise NotImplementedError("This method should be implemented by the derived class.")
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig` to
include the `out_features` and `out_indices` attributes.
"""
output = super().to_dict()
output["out_features"] = output.pop("_out_features")
output["out_indices"] = output.pop("_out_indices")
return output
class BackboneConfigMixin:
"""
A Mixin to support handling the `out_features` and `out_indices` attributes for the backbone configurations.
"""
@property
def out_features(self):
return self._out_features
@out_features.setter
def out_features(self, out_features: List[str]):
"""
Set the out_features attribute. This will also update the out_indices attribute to match the new out_features.
"""
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=None, stage_names=self.stage_names
)
@property
def out_indices(self):
return self._out_indices
@out_indices.setter
def out_indices(self, out_indices: Union[Tuple[int], List[int]]):
"""
Set the out_indices attribute. This will also update the out_features attribute to match the new out_indices.
"""
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=None, out_indices=out_indices, stage_names=self.stage_names
)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig` to
include the `out_features` and `out_indices` attributes.
"""
output = super().to_dict()
output["out_features"] = output.pop("_out_features")
output["out_indices"] = output.pop("_out_indices")
return output