TinyGPT-V / modified /models /phi /convert_phi_weights_to_hf.py
Li Zhaoxu
init
122057f
raw
history blame
6.41 kB
# coding=utf-8
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Weights conversion script for Phi
This script downloads both Phi-1 and Phi-1.5 checkpoints to "checkpoint_path" and then converts the weights to
HugfgingFace model's format and saves them in "pytorch_dump_folder_path".
"""
import argparse
import gc
import os
import torch
from huggingface_hub import hf_hub_download
from transformers import PhiConfig, PhiForCausalLM
_MODELS = {
"microsoft/phi-1": "https://huggingface.co/microsoft/phi-1/blob/main/pytorch_model.bin",
"microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/blob/main/pytorch_model.bin",
}
PHI_MAPPING = {
"layers.0.wte.weight": "model.embed_tokens.weight",
"layers.25.linear.bias": "lm_head.bias",
"layers.25.linear.weight": "lm_head.weight",
"layers.25.ln.bias": "model.final_layernorm.bias",
"layers.25.ln.weight": "model.final_layernorm.weight",
"layers": "model.layers",
"ln": "input_layernorm",
"mixer": "self_attn",
"Wqkv": "query_key_value",
"out_proj": "dense",
}
def convert_weights(original_weights, mapping, config):
converted_weights = {}
original_weights_keys = sorted(original_weights.keys())
# we change names (1-24) -> layers(0-23) for Phi model layers
range_change = {
f"layers.{k}.": f"layers.{v}."
for k, v in zip(range(1, config.num_hidden_layers + 1), range(0, config.num_hidden_layers))
}
mapping.update(**range_change)
for original_weights_key in original_weights_keys:
new_key = original_weights_key
if "rotary_emb" in new_key:
continue
if "Wqkv" in new_key:
if "weight" in new_key:
weight = original_weights[new_key]
weights_shape = weight.shape
weight = (
weight.view(3, config.num_attention_heads, -1, config.hidden_size)
.transpose(0, 1)
.reshape(*weights_shape)
)
original_weights[new_key] = weight
elif "bias" in new_key:
bias = original_weights[new_key]
bias_shape = bias.shape
bias = bias.view(3, config.num_attention_heads, -1).transpose(0, 1).reshape(*bias_shape)
original_weights[new_key] = bias
for k, v in mapping.items():
if k in new_key:
new_key = new_key.replace(k, v)
converted_weights[new_key] = original_weights.pop(original_weights_key)
return converted_weights
def _download(url: str, root: str):
repo_id = f"{url.split('/')[3]}/{url.split('/')[4]}"
filename = f"{url.split('/')[-1]}"
hf_hub_download(
repo_id=repo_id,
filename=filename,
force_filename=root,
local_dir_use_symlinks=False,
)
def convert_phi_weights(checkpoint_path, pytorch_dump_folder_path, use_cuda, save_weights_directly):
device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
for each_model_name, each_model_url in _MODELS.items():
converted_checkpoint = {}
model_path = os.path.join(checkpoint_path, each_model_name + "_" + each_model_url.split("/")[-1])
if not os.path.exists(model_path):
print(f"\n{each_model_name} was not found! Downloading it to {model_path}")
_download(url=each_model_url, root=model_path)
model_checkpoint = torch.load(model_path, map_location=device)
model_type = each_model_name.split("/")[1] # phi-1 or phi-1_5
config = PhiConfig.from_pretrained(f"susnato/{model_type}_dev")
# Converting the weights
converted_checkpoint.update(**convert_weights(model_checkpoint, PHI_MAPPING, config))
# Save either the whole model or the converted weights
if save_weights_directly:
save_weights_path = os.path.join(
pytorch_dump_folder_path, each_model_name.split("/")[-1] + "_" + each_model_url.split("/")[-1]
)
torch.save(converted_checkpoint, save_weights_path)
print(f"Model weights saved at {save_weights_path}!")
else:
model = PhiForCausalLM(config).to(device)
model.load_state_dict(converted_checkpoint, strict=True)
save_model_path = os.path.join(pytorch_dump_folder_path, model_type)
model.save_pretrained(save_model_path)
print(f"Model saved at {save_model_path}!")
# release GPU memory for the 2nd model if cuda was used.
del config, model
# release GPU memory for the 2nd model if cuda was used.
del model_checkpoint, converted_checkpoint
if use_cuda:
torch.cuda.empty_cache()
gc.collect()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# # Required parameters
parser.add_argument(
"--checkpoint_path", type=str, help="Path to the folder of downloaded checkpoints. (Please enter full path)"
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
help="Path to the output PyTorch model. (Please enter full path)",
)
parser.add_argument(
"--use_cuda",
default=False,
type=bool,
help="Whether to load the weights on GPU during conversion or not, False by default",
)
parser.add_argument(
"--save_weights_directly",
default=True,
type=bool,
help="Whether to save the weights directly after conversion or load the weight to the Phi model and then save "
"the Phi model along with weights. True by default",
)
args = parser.parse_args()
convert_phi_weights(args.checkpoint_path, args.pytorch_dump_folder_path, args.use_cuda, args.save_weights_directly)