TinyGPT-V / modified /safetensors_conversion.py
Li Zhaoxu
init
122057f
raw
history blame
4.32 kB
import json
import uuid
from typing import Optional
import requests
from huggingface_hub import Discussion, HfApi, get_repo_discussions
from .utils import cached_file, logging
logger = logging.get_logger(__name__)
def previous_pr(api: HfApi, model_id: str, pr_title: str, token: str) -> Optional["Discussion"]:
main_commit = api.list_repo_commits(model_id, token=token)[0].commit_id
for discussion in get_repo_discussions(repo_id=model_id, token=token):
if discussion.title == pr_title and discussion.status == "open" and discussion.is_pull_request:
commits = api.list_repo_commits(model_id, revision=discussion.git_reference, token=token)
if main_commit == commits[1].commit_id:
return discussion
return None
def spawn_conversion(token: str, private: bool, model_id: str):
logger.info("Attempting to convert .bin model on the fly to safetensors.")
safetensors_convert_space_url = "https://safetensors-convert.hf.space"
sse_url = f"{safetensors_convert_space_url}/queue/join"
sse_data_url = f"{safetensors_convert_space_url}/queue/data"
# The `fn_index` is necessary to indicate to gradio that we will use the `run` method of the Space.
hash_data = {"fn_index": 1, "session_hash": str(uuid.uuid4())}
def start(_sse_connection, payload):
for line in _sse_connection.iter_lines():
line = line.decode()
if line.startswith("data:"):
resp = json.loads(line[5:])
logger.debug(f"Safetensors conversion status: {resp['msg']}")
if resp["msg"] == "queue_full":
raise ValueError("Queue is full! Please try again.")
elif resp["msg"] == "send_data":
event_id = resp["event_id"]
response = requests.post(
sse_data_url,
stream=True,
params=hash_data,
json={"event_id": event_id, **payload, **hash_data},
)
response.raise_for_status()
elif resp["msg"] == "process_completed":
return
with requests.get(sse_url, stream=True, params=hash_data) as sse_connection:
data = {"data": [model_id, private, token]}
try:
logger.debug("Spawning safetensors automatic conversion.")
start(sse_connection, data)
except Exception as e:
logger.warning(f"Error during conversion: {repr(e)}")
def get_conversion_pr_reference(api: HfApi, model_id: str, **kwargs):
private = api.model_info(model_id).private
logger.info("Attempting to create safetensors variant")
pr_title = "Adding `safetensors` variant of this model"
token = kwargs.get("token")
# This looks into the current repo's open PRs to see if a PR for safetensors was already open. If so, it
# returns it. It checks that the PR was opened by the bot and not by another user so as to prevent
# security breaches.
pr = previous_pr(api, model_id, pr_title, token=token)
if pr is None or (not private and pr.author != "SFConvertBot"):
spawn_conversion(token, private, model_id)
pr = previous_pr(api, model_id, pr_title, token=token)
else:
logger.info("Safetensors PR exists")
sha = f"refs/pr/{pr.num}"
return sha
def auto_conversion(pretrained_model_name_or_path: str, **cached_file_kwargs):
api = HfApi(token=cached_file_kwargs.get("token"))
sha = get_conversion_pr_reference(api, pretrained_model_name_or_path, **cached_file_kwargs)
if sha is None:
return None, None
cached_file_kwargs["revision"] = sha
del cached_file_kwargs["_commit_hash"]
# This is an additional HEAD call that could be removed if we could infer sharded/non-sharded from the PR
# description.
sharded = api.file_exists(
pretrained_model_name_or_path,
"model.safetensors.index.json",
revision=sha,
token=cached_file_kwargs.get("token"),
)
filename = "model.safetensors.index.json" if sharded else "model.safetensors"
resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
return resolved_archive_file, sha, sharded