TinyGPT-V / minigpt4 /models /minigpt_base.py
Li Zhaoxu
init
122057f
import logging
import random
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
from minigpt4.common.registry import registry
from minigpt4.models.base_model import BaseModel
from transformers import StoppingCriteria, StoppingCriteriaList
from minigpt4.conversation.conversation import StoppingCriteriaSub
class MiniGPTBase(BaseModel):
"""
Base class for MiniGPT-4 and MiniGPT-v2
"""
def __init__(
self,
vit_model="eva_clip_g",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
llama_model="",
max_txt_len=32,
max_context_len=3800,
prompt_template="",
end_sym='\n',
low_resource=False, # use 8 bit and put vit in cpu
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
lora_r=0, # lora_r means lora is not used
lora_target_modules=["q_proj", "v_proj"],
lora_alpha=16,
lora_dropout=0.05,
):
super().__init__()
self.llama_model, self.llama_tokenizer = self.init_llm(
llama_model_path=llama_model,
low_resource=low_resource,
low_res_device=device_8bit,
lora_r=lora_r,
lora_target_modules=lora_target_modules,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
)
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision, freeze_vit
)
self.max_txt_len = max_txt_len
self.max_context_len = max_context_len
self.end_sym = end_sym
self.prompt_template = prompt_template
self.prompt_list = []
def vit_to_cpu(self):
self.ln_vision.to("cpu")
self.ln_vision.float()
self.visual_encoder.to("cpu")
self.visual_encoder.float()
def get_context_emb(self, prompt, img_list):
device = img_list[0].device
prompt_segs = prompt.split('<ImageHere>')
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
seg_tokens = [
self.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i==0).to(device).input_ids # only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs
def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None):
if prompts is None or len(prompts) == 0:
# prompts is not provided, just return the original image embedding
return img_embeds, atts_img
elif img_embeds is None:
# prompt is provided but there is no image embedding. return the prompt embedding in right padding
self.llama_tokenizer.padding_side = "right"
prompt_tokens = self.llama_tokenizer(
prompts,
return_tensors="pt",
padding="longest",
add_special_tokens=False
).to(self.device)
prompt_embeds = self.embed_tokens(prompt_tokens.input_ids)
atts_prompt = prompt_tokens.attention_mask
return prompt_embeds, atts_prompt
else:
# return the multi-modal embedding in right padding
emb_lists = []
if isinstance(prompts, str):
prompts = [prompts] * len(img_embeds)
for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)):
pn = each_img_embed.shape[-2]
if lengths is not None:
each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1])
each_img_embed = each_img_embed[:lengths[idx] * pn]
p_segs = each_prompt.split('<ImageHere>')
interleave_emb = []
for idx, seg in enumerate(p_segs[:-1]):
p_tokens = self.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_embed = self.embed_tokens(p_tokens.input_ids)
interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx * pn:(idx + 1) * pn]], dim=1))
wrapped_emb = torch.cat(interleave_emb, dim=1)
p_tokens = self.llama_tokenizer(
p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_embed = self.embed_tokens(p_tokens.input_ids)
wrapped_emb = torch.cat([wrapped_emb, p_embed], dim=1)
emb_lists.append(wrapped_emb)
emb_lens = [emb.shape[1] for emb in emb_lists]
pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device))
max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len
wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone()
wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device)
for i, emb in enumerate(emb_lists):
length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len
wrapped_embs[i, :length] = emb[:, :length]
wrapped_atts[i, :length] = 1
return wrapped_embs, wrapped_atts
def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts):
"""
Concatenate the batched input embedding and batched output embedding together.
Both the input and the output embedding should be right padded.
"""
input_lens = []
cat_embs = []
cat_atts = []
for i in range(input_embs.size(0)):
input_len = input_atts[i].sum()
input_lens.append(input_len)
cat_embs.append(
torch.cat([
input_embs[i][:input_len],
output_embs[i],
input_embs[i][input_len:]
])
)
cat_atts.append(
torch.cat([
input_atts[i][:input_len],
output_atts[i],
input_atts[i][input_len:]
])
)
cat_embs = torch.stack(cat_embs)
cat_atts = torch.stack(cat_atts)
return cat_embs, cat_atts, input_lens
def tokenize_conversation(self, conv_q, conv_a):
"""concatenate conversation and make sure the model is only trained to regress the answer"""
to_regress_token_ids_list = []
targets_list = []
batch_size = len(conv_q)
for batch_idx in range(batch_size):
questions, answers = conv_q[batch_idx], conv_a[batch_idx]
questions = [self.llama_tokenizer(self.llama_tokenizer.bos_token + q,
return_tensors="pt",
add_special_tokens=False).to(self.device) for q in questions[1:]] # the first question is handled in the prompt wrap function, skip it
answers = [self.llama_tokenizer(a + self.end_sym,
return_tensors="pt",
add_special_tokens=False).to(self.device) for a in answers]
cur_id = []
cur_target = []
for i in range(len(questions)):
cur_id.append(answers[i].input_ids)
cur_target.append(answers[i].input_ids)
cur_id.append(questions[i].input_ids)
cur_target.append(torch.ones_like(questions[i].input_ids) * -100)
cur_id.append(answers[-1].input_ids)
cur_target.append(answers[-1].input_ids)
cur_id = torch.cat(cur_id, dim=1)
cur_target = torch.cat(cur_target, dim=1)
to_regress_token_ids_list.append(cur_id)
targets_list.append(cur_target)
max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len)
to_regress_token_ids = torch.ones([batch_size, max_len],
dtype=cur_id.dtype, device=self.device) * self.llama_tokenizer.pad_token_id
targets = torch.ones([batch_size, max_len],
dtype=cur_id.dtype, device=self.device) * -100
for batch_idx in range(batch_size):
cur_len = to_regress_token_ids_list[batch_idx].shape[1]
to_regress_token_ids[batch_idx, :cur_len] = to_regress_token_ids_list[batch_idx][0, :max_len]
targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len]
to_regress_token_attn = (to_regress_token_ids != self.llama_tokenizer.pad_token_id).to(torch.int)
return to_regress_token_ids, to_regress_token_attn, targets
def preparing_embedding(self, samples):
### prepare input tokens
if 'image' in samples:
img_embeds, img_atts = self.encode_img(samples["image"])
else:
img_embeds = img_atts = None
if 'conv_q' in samples:
# handeling conversation datasets
conv_q, conv_a = samples['conv_q'], samples['conv_a']
connect_sym = samples['connect_sym'][0]
conv_q = [q.split(connect_sym)for q in conv_q]
conv_a = [a.split(connect_sym) for a in conv_a]
conv_q = [[self.prompt_template.format(item) for item in items] for items in conv_q]
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, [q[0] for q in conv_q])
regress_token_ids, regress_atts, part_targets = self.tokenize_conversation(conv_q, conv_a)
else:
if "instruction_input" in samples:
instruction = samples["instruction_input"]
elif self.prompt_list:
instruction = random.choice(self.prompt_list)
else:
instruction = None
if hasattr(self, 'chat_template') and self.chat_template:
instruction = [self.prompt_template.format(instruct) for instruct in instruction]
if 'length' in samples:
# the input is a image train (like videos)
bsz, pn, hs = img_embeds.shape
img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs)
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length'])
else:
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction)
### prepare target tokens
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in samples["answer"]]
regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(self.device)
regress_token_ids = regress_tokens.input_ids
regress_atts = regress_tokens.attention_mask
part_targets = regress_token_ids.masked_fill(
regress_token_ids == self.llama_tokenizer.pad_token_id, -100
)
regress_embeds = self.embed_tokens(regress_token_ids)
return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets
def forward(self, samples,):
# prepare the embedding to condition and the embedding to regress
cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \
self.preparing_embedding(samples)
# concat the embedding to condition and the embedding to regress
inputs_embeds, attention_mask, input_lens = \
self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts)
# get bos token embedding
bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
bos_atts = cond_atts[:, :1]
# add bos token at the begining
inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1)
attention_mask = torch.cat([bos_atts, attention_mask], dim=1)
# ensemble the final targets
targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]],
dtype=torch.long).to(self.device).fill_(-100)
for i, target in enumerate(part_targets):
targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target # plus 1 for bos
with self.maybe_autocast():
outputs = self.llama_model(
input_ids = None,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
def embed_tokens(self, token_ids):
if hasattr(self.llama_model.base_model, 'model'): ## lora wrapped model
embeds = self.llama_model.model.model.embed_tokens(token_ids)
else:
embeds = self.llama_model.model.embed_tokens(token_ids)
return embeds
@torch.no_grad()
def generate(
self,
images,
texts,
num_beams=1,
max_new_tokens=20,
min_length=1,
top_p=0.9,
repetition_penalty=1,
length_penalty=1,
temperature=1,
do_sample=False,
stop_words_ids=[2],
):
'''
function for generate test use
'''
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])
img_embeds, atts_img = self.encode_img(images.to(self.device))
image_lists = [[image_emb[None]] for image_emb in img_embeds]
batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)]
batch_size = len(batch_embs)
max_len = max([emb.shape[1] for emb in batch_embs])
emb_dim = batch_embs[0].shape[2]
dtype = batch_embs[0].dtype
device = batch_embs[0].device
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
for i, emb in enumerate(batch_embs):
emb_len = emb.shape[1]
embs[i, -emb_len:] = emb[0]
attn_mask[i, -emb_len:] = 1
with self.maybe_autocast():
outputs = self.llama_model.generate(
inputs_embeds=embs,
attention_mask=attn_mask,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
length_penalty=length_penalty,
temperature=temperature,
do_sample=do_sample,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
bos_token_id = 50256
# stopping_criteria=stopping_criteria,
)
# with self.maybe_autocast():
# outputs = self.llama_model.generate(
# inputs_embeds=embs,
# attention_mask=attn_mask,
# max_new_tokens=max_new_tokens,
# num_beams=num_beams,
# do_sample=do_sample,
# # stopping_criteria=stopping_criteria,
# )
answers = []
for output_token in outputs:
if output_token[0] == 0:
output_token = output_token[1:]
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
output_texts = output_texts.split('</s>')[0] # remove the stop sign </s>
output_texts = output_texts.replace("<s>", "")
output_texts = output_texts.split(r'[/INST]')[-1].strip()
answers.append(output_texts)
return answers
@torch.no_grad()
def multi_select(self, images, texts, answers, num_cand=None):
all_losses = []
for answer in answers:
choice_samples = {
'image': images,
'instruction_input': texts,
'answer': answer
}
loss = self.forward(choice_samples)['loss'].reshape(-1, 1)
all_losses.append(loss)
torch.cuda.empty_cache()
all_losses = torch.cat(all_losses, dim=-1)
if num_cand is not None:
for i in range(all_losses.shape[0]):
all_losses[i, num_cand[i]:] = 9999
output_class_ranks = torch.argsort(all_losses, dim=-1)
return output_class_ranks.tolist()