Spaces:
Runtime error
Runtime error
# Copyright (c) Microsoft Corporation. | |
# Licensed under the MIT license. | |
# | |
# Copyright (c) 2022, Tri Dao, [email protected]. | |
# Licensed under the BSD 3-Clause License. | |
from __future__ import annotations | |
import math | |
from dataclasses import dataclass, field | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from einops import rearrange, repeat | |
from transformers import PretrainedConfig, PreTrainedModel | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from .configuration_phi import PhiConfig | |
try: | |
from flash_attn.bert_padding import pad_input, unpad_input | |
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding | |
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention | |
from flash_attn.ops.fused_dense import FusedDense | |
except: | |
pad_input, unpad_input = None, None | |
FlashRotaryEmbedding = None | |
FlashSelfAttention, FlashCrossAttention = None, None | |
FusedDense = None | |
class InferenceParams: | |
"""Inference parameters passed to model to efficiently calculate | |
and store context during inference. | |
Reference: | |
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py. | |
Args: | |
max_seqlen: Maximum sequence length. | |
max_batch_size: Maximum batch size. | |
seqlen_offset: Sequence length offset. | |
batch_size_offset: Batch size offset. | |
key_value_memory_dict: Key value memory dictionary. | |
lengths_per_sample: Lengths per sample. | |
""" | |
max_seqlen: int = field(metadata={"help": "Maximum sequence length."}) | |
max_batch_size: int = field(metadata={"help": "Maximum batch size."}) | |
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."}) | |
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."}) | |
key_value_memory_dict: Dict[str, Any] = field( | |
default_factory=dict, metadata={"help": "Key value memory dictionary."} | |
) | |
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."}) | |
class Embedding(nn.Module): | |
"""Token embedding with dropout.""" | |
def __init__(self, config: PretrainedConfig) -> None: | |
super().__init__() | |
self.wte = nn.Embedding(config.vocab_size, config.n_embd) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: | |
hidden_states = self.wte(input_ids) | |
hidden_states = self.drop(hidden_states) | |
return hidden_states | |
def _apply_rotary_emb( | |
x: torch.FloatTensor, | |
cos: torch.FloatTensor, | |
sin: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
_, seqlen, _, _ = x.shape | |
_, rotary_dim = cos.shape | |
rotary_dim *= 2 | |
x_rot = x[:, :, :, :rotary_dim] | |
x_pass = x[:, :, :, rotary_dim:] | |
x1, x2 = x_rot.chunk(2, dim=-1) | |
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") | |
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]] | |
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype) | |
return torch.cat([x_rot, x_pass], axis=-1) | |
def _apply_rotary_emb_kv( | |
kv: torch.FloatTensor, | |
cos: torch.FloatTensor, | |
sin: torch.FloatTensor, | |
cos_k: Optional[torch.FloatTensor] = None, | |
sin_k: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
_, seqlen, _, _, _ = kv.shape | |
_, rotary_dim = cos.shape | |
rotary_dim *= 2 | |
k_rot = kv[:, :, 0, :, :rotary_dim] | |
k_pass = kv[:, :, 0, :, rotary_dim:] | |
k1, k2 = k_rot.chunk(2, dim=-1) | |
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") | |
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]] | |
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype) | |
return torch.cat( | |
[ | |
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), | |
kv[:, :, 1:2, :, :], | |
], | |
axis=2, | |
) | |
def _apply_rotary_emb_qkv( | |
qkv: torch.FloatTensor, | |
cos: torch.FloatTensor, | |
sin: torch.FloatTensor, | |
cos_k: Optional[torch.FloatTensor] = None, | |
sin_k: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
_, seqlen, _, _, _ = qkv.shape | |
_, rotary_dim = cos.shape | |
rotary_dim *= 2 | |
q_rot = qkv[:, :, 0, :, :rotary_dim] | |
q_pass = qkv[:, :, 0, :, rotary_dim:] | |
k_rot = qkv[:, :, 1, :, :rotary_dim] | |
k_pass = qkv[:, :, 1, :, rotary_dim:] | |
q1, q2 = q_rot.chunk(2, dim=-1) | |
k1, k2 = k_rot.chunk(2, dim=-1) | |
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") | |
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]] | |
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype) | |
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype) | |
return torch.cat( | |
[ | |
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2), | |
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), | |
qkv[:, :, 2:3, :, :], | |
], | |
axis=2, | |
) | |
class RotaryEmbedding(nn.Module): | |
"""Rotary positional embedding (RoPE). | |
Reference: | |
RoFormer: Enhanced Transformer with Rotary Position Embedding. | |
https://arxiv.org/pdf/2104.09864.pdf. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
base: int = 10000, | |
scale_base: Optional[float] = None, | |
pos_idx_in_fp32: bool = True, | |
max_position_embeddings: int = 2048, | |
device: Optional[str] = None, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
if scale_base is not None: | |
raise NotImplementedError | |
self.dim = dim | |
self.base = float(base) | |
self.scale_base = scale_base | |
self.pos_idx_in_fp32 = pos_idx_in_fp32 | |
self.max_position_embeddings = max_position_embeddings | |
self.device = device | |
# Generate and save the inverse frequency buffer (non-trainable) | |
inv_freq = self._compute_inv_freq(device) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Generate and save the scale buffer (non-trainable) | |
scale = ( | |
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) | |
if scale_base is not None | |
else None | |
) | |
self.register_buffer("scale", scale, persistent=False) | |
# Initialize cached attributes since ONNX can't rely on dynamic initialization | |
self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32) | |
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor: | |
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) | |
def _update_cos_sin_cache( | |
self, | |
seqlen: int, | |
device: Optional[str] = None, | |
dtype: Optional[torch.dtype] = None, | |
) -> None: | |
self._seq_len_cached = seqlen | |
# fp32 is preferred since the output of `torch.arange` can be quite large | |
# and bf16 would lose a lot of precision | |
if self.pos_idx_in_fp32: | |
t = torch.arange(seqlen, device=device, dtype=torch.float32) | |
if self.inv_freq.dtype != torch.float32: | |
inv_freq = self._compute_inv_freq(device=device) | |
else: | |
inv_freq = self.inv_freq | |
else: | |
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) | |
inv_freq = self.inv_freq | |
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP | |
freqs = torch.outer(t, inv_freq) | |
if self.scale is None: | |
self._cos_cached = torch.cos(freqs).to(dtype) | |
self._sin_cached = torch.sin(freqs).to(dtype) | |
else: | |
power = ( | |
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2 | |
) / self.scale_base | |
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") | |
# Force the scale multiplication to happen in fp32 | |
self._cos_cached = (torch.cos(freqs) * scale).to(dtype) | |
self._sin_cached = (torch.sin(freqs) * scale).to(dtype) | |
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) | |
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) | |
def forward( | |
self, | |
qkv: torch.Tensor, | |
kv: Optional[torch.Tensor] = None, | |
seqlen_offset: int = 0, | |
**kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if ( | |
self._seq_len_cached < qkv.shape[1] + seqlen_offset | |
or self._cos_cached.device != qkv.device | |
or self._cos_cached.dtype != qkv.dtype | |
or (self.training and self._cos_cached.is_inference()) | |
): | |
self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype) | |
if kv is None: | |
return _apply_rotary_emb_qkv( | |
qkv, | |
self._cos_cached[seqlen_offset:], | |
self._sin_cached[seqlen_offset:], | |
) | |
else: | |
q = _apply_rotary_emb( | |
qkv, | |
self._cos_cached[seqlen_offset:], | |
self._sin_cached[seqlen_offset:], | |
) | |
kv = _apply_rotary_emb_kv( | |
kv, | |
self._cos_cached[seqlen_offset:], | |
self._sin_cached[seqlen_offset:], | |
) | |
return q, kv | |
class MLP(nn.Module): | |
"""Multi-Layer Perceptron. | |
Reference: | |
Attention Is All You Need. | |
https://arxiv.org/pdf/1706.03762.pdf. | |
""" | |
def __init__( | |
self, | |
config: PretrainedConfig, | |
n_inner: Optional[int] = None, | |
act_fn: Optional[str] = None, | |
) -> None: | |
super().__init__() | |
act_fn = config.activation_function if act_fn is None else act_fn | |
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner | |
n_inner = n_inner if n_inner is not None else 4 * config.n_embd | |
self.fc1 = nn.Linear(config.n_embd, n_inner) | |
self.fc2 = nn.Linear(n_inner, config.n_embd) | |
self.act = ACT2FN[act_fn] | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class SelfAttention(nn.Module): | |
"""Self-attention layer (compatible with PyTorch). | |
Reference: | |
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. | |
""" | |
def __init__( | |
self, | |
causal: bool = True, | |
softmax_scale: Optional[float] = None, | |
attention_dropout: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.causal = causal | |
self.softmax_scale = softmax_scale | |
self.drop = nn.Dropout(attention_dropout) | |
def forward( | |
self, | |
qkv: torch.FloatTensor, | |
causal: bool = None, | |
key_padding_mask: Optional[torch.BoolTensor] = None, | |
**kwargs, | |
) -> torch.FloatTensor: | |
batch_size, seqlen = qkv.shape[0], qkv.shape[1] | |
q, k, v = qkv.unbind(dim=2) | |
q = q.to(torch.float32) | |
k = k.to(torch.float32) | |
causal = self.causal if causal is None else causal | |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) | |
# Autocast is manually disabled to avoid `torch.einsum` performing the operation | |
# using float16, which might lead to overflow | |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) | |
if key_padding_mask is not None: | |
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device) | |
padding_mask.masked_fill_(key_padding_mask, 0.0) | |
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") | |
if causal: | |
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) | |
scores = scores + causal_mask.to(dtype=scores.dtype) | |
attention = torch.softmax(scores, dim=-1).to(v.dtype) | |
attention = self.drop(attention) | |
output = torch.einsum("bhts,bshd->bthd", attention, v) | |
return output | |
class CrossAttention(nn.Module): | |
"""Cross-attention layer (compatible with PyTorch). | |
Reference: | |
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. | |
""" | |
def __init__( | |
self, | |
causal: bool = True, | |
softmax_scale: Optional[float] = None, | |
attention_dropout: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.causal = causal | |
self.softmax_scale = softmax_scale | |
self.drop = nn.Dropout(attention_dropout) | |
def forward( | |
self, | |
q: torch.FloatTensor, | |
kv: torch.FloatTensor, | |
causal: bool = None, | |
key_padding_mask: Optional[torch.BoolTensor] = None, | |
**kwargs, | |
) -> torch.FloatTensor: | |
batch_size, seqlen_q = q.shape[0], q.shape[1] | |
seqlen_k = kv.shape[1] | |
if kv.shape[3] != q.shape[2]: | |
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3]) | |
k, v = kv.unbind(dim=2) | |
q = q.to(torch.float32) | |
k = k.to(torch.float32) | |
causal = self.causal if causal is None else causal | |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) | |
# Autocast is manually disabled to avoid `torch.einsum` performing the operation | |
# using float16, which might lead to overflow | |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) | |
if key_padding_mask is not None: | |
padding_mask = torch.full( | |
(batch_size, seqlen_k), | |
-10000.0, | |
dtype=scores.dtype, | |
device=scores.device, | |
) | |
padding_mask.masked_fill_(key_padding_mask, 0.0) | |
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") | |
if causal: | |
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1") | |
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long) | |
causal_mask = cols > rows + seqlen_k - seqlen_q | |
scores = scores.masked_fill(causal_mask, -10000.0) | |
attention = torch.softmax(scores, dim=-1).to(v.dtype) | |
attention = self.drop(attention) | |
output = torch.einsum("bhts,bshd->bthd", attention, v) | |
return output | |
def _find_mha_dims( | |
config: PretrainedConfig, | |
n_head: Optional[int] = None, | |
n_head_kv: Optional[int] = None, | |
head_dim: Optional[int] = None, | |
) -> Tuple[int, int]: | |
if n_head is None and head_dim is None: | |
head_dim = config.n_embd // config.n_head | |
n_head = config.n_head | |
elif n_head is None or head_dim is None: | |
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.") | |
if n_head_kv is None: | |
n_head_kv = getattr(config, "n_head_kv", None) or n_head | |
return n_head, n_head_kv, head_dim | |
def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor: | |
num_heads, head_dim = kv.shape[-2:] | |
if layer_idx not in inference_params.key_value_memory_dict: | |
inference_params.key_value_memory_dict[layer_idx] = torch.empty( | |
inference_params.max_batch_size, | |
inference_params.max_seqlen, | |
2, | |
num_heads, | |
head_dim, | |
dtype=kv.dtype, | |
device=kv.device, | |
) | |
batch_start = inference_params.batch_size_offset | |
batch_end = batch_start + kv.shape[0] | |
sequence_start = inference_params.seqlen_offset | |
sequence_end = sequence_start + kv.shape[1] | |
# When the current sequence length is equal to or larger than the maximum sequence length, | |
# we need to concatenate the current `kv` with the cached `kv` to expand its length | |
if sequence_end >= inference_params.max_seqlen: | |
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate((inference_params.key_value_memory_dict[layer_idx], kv), dim=1) | |
inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...] = kv | |
kv = inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, :sequence_end, ...] | |
return kv | |
class MHA(nn.Module): | |
"""Multi-head attention layer.""" | |
def __init__( | |
self, | |
config: PretrainedConfig, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[str] = None, | |
rotary_dim: Optional[int] = None, | |
rotary_base: float = 10000.0, | |
rotary_scale_base: Optional[float] = None, | |
n_head: Optional[int] = None, | |
n_head_kv: Optional[int] = None, | |
head_dim: Optional[int] = None, | |
bias: bool = True, | |
causal: bool = True, | |
softmax_scale: Optional[float] = None, | |
layer_idx: Optional[int] = None, | |
return_residual: bool = False, | |
checkpointing: bool = False, | |
) -> None: | |
super().__init__() | |
# Rotary embedding | |
self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0) | |
if self.rotary_dim > 0: | |
rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding | |
if rotary_cls is None: | |
rotary_cls = RotaryEmbedding | |
rotary_kwargs = {} | |
if rotary_cls is RotaryEmbedding: | |
rotary_kwargs["max_position_embeddings"] = config.n_positions | |
self.rotary_emb = rotary_cls( | |
self.rotary_dim, | |
base=rotary_base, | |
scale_base=rotary_scale_base, | |
device=device, | |
**rotary_kwargs, | |
) | |
# MLP | |
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims( | |
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim | |
) | |
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv) | |
hidden_size = config.n_embd | |
linear_cls = FusedDense if config.fused_dense else nn.Linear | |
if linear_cls is None: | |
linear_cls = nn.Linear | |
self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype) | |
self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype) | |
# Attention | |
attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention | |
if attn_cls is None: | |
attn_cls = SelfAttention | |
cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention | |
if cross_attn_cls is None: | |
cross_attn_cls = CrossAttention | |
self.inner_attn = attn_cls( | |
causal=causal, | |
softmax_scale=softmax_scale, | |
attention_dropout=config.attn_pdrop, | |
) | |
self.inner_cross_attn = cross_attn_cls( | |
causal=causal, | |
softmax_scale=softmax_scale, | |
attention_dropout=config.attn_pdrop, | |
) | |
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention | |
self.layer_idx = layer_idx | |
self.return_residual = return_residual | |
self.checkpointing = checkpointing | |
def _forward_self_attn( | |
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor] | |
) -> torch.FloatTensor: | |
qkv = self.Wqkv(x) | |
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim) | |
if self.rotary_dim > 0: | |
qkv = self.rotary_emb(qkv) | |
if self.flash_attn: | |
batch_size, seqlen = qkv.shape[0], qkv.shape[1] | |
cu_seqlens, max_seqlen = None, None | |
if key_padding_mask is not None: | |
# If `key_padding_mask` is supplied, we need to unpad the input and retrieve | |
# the `cu_seqlens` and `max_seqlen` to be used by `flash-attn` | |
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask) | |
if self.checkpointing: | |
attn_output = torch.utils.checkpoint.checkpoint( | |
self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen | |
) | |
else: | |
attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device) | |
# If `key_padding_mask` is supplied, we need to pad the output back to the original shape | |
return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output | |
if self.checkpointing: | |
return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask) | |
return self.inner_attn(qkv, key_padding_mask=key_padding_mask) | |
def _forward_cross_attn( | |
self, | |
x: torch.FloatTensor, | |
past_key_values: Optional[InferenceParams], | |
key_padding_mask: Optional[torch.BoolTensor], | |
) -> torch.FloatTensor: | |
batch_size = x.shape[0] | |
qkv = self.Wqkv(x) | |
q = qkv[..., : self.n_head * self.head_dim] | |
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) | |
kv = qkv[..., self.n_head * self.head_dim :] | |
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) | |
seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0 | |
causal = None if seqlen_offset == 0 else False | |
if self.rotary_dim > 0: | |
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset) | |
if past_key_values is not None: | |
kv = _update_kv_cache(kv, past_key_values, self.layer_idx) | |
if self.flash_attn: | |
batch_size, seqlen_q = q.shape[0], q.shape[1] | |
seqlen_k = kv.shape[1] | |
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = ( | |
None, | |
None, | |
None, | |
None, | |
) | |
if key_padding_mask is not None: | |
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask) | |
if seqlen_q == 1: | |
key_padding_mask = torch.ones(batch_size, 1, device=q.device) | |
elif seqlen_q != seqlen_k: | |
key_padding_mask = key_padding_mask[:, -seqlen_q:] | |
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask) | |
if self.checkpointing: | |
attn_output = torch.utils.checkpoint.checkpoint( | |
self.inner_cross_attn, | |
q, | |
kv, | |
causal=causal, | |
cu_seqlens=cu_seqlens_q, | |
max_seqlen=max_seqlen_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_k=max_seqlen_k, | |
) | |
else: | |
attn_output = self.inner_cross_attn( | |
q, | |
kv, | |
causal=causal, | |
cu_seqlens=cu_seqlens_q, | |
max_seqlen=max_seqlen_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_k=max_seqlen_k, | |
) | |
return ( | |
pad_input(attn_output, indices_q, batch_size, max_seqlen_q) | |
if key_padding_mask is not None | |
else attn_output | |
) | |
if self.checkpointing: | |
return torch.utils.checkpoint.checkpoint( | |
self.inner_cross_attn, | |
q, | |
kv, | |
key_padding_mask=key_padding_mask, | |
causal=causal, | |
) | |
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal) | |
def forward( | |
self, | |
x: torch.FloatTensor, | |
past_key_values: Optional[InferenceParams] = None, | |
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
if attention_mask is not None: | |
attention_mask = attention_mask.bool() | |
else: | |
attention_mask = None | |
# MHA | |
if self.n_head == self.n_head_kv: | |
if past_key_values is None: | |
# If `past_key_values` are not supplied, we run self-attention | |
attn_output = self._forward_self_attn(x, attention_mask) | |
else: | |
# If `past_key_values` are supplied, it means that we might have cached values and | |
# could take advantage of cross-attention | |
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask) | |
# MQA / GQA | |
else: | |
# Regardless of `past_key_values` being supplied or not, it always use cross-attention | |
# because `q` and `kv` lengths might be different | |
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask) | |
output = rearrange(attn_output, "... h d -> ... (h d)") | |
output = self.out_proj(output) | |
return output if not self.return_residual else (output, x) | |
class ParallelBlock(nn.Module): | |
"""Parallel block. | |
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen). | |
""" | |
def __init__( | |
self, | |
config: PretrainedConfig, | |
block_idx: Optional[int] = None, | |
) -> None: | |
super().__init__() | |
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
self.block_idx = block_idx | |
self.mixer = MHA(config, layer_idx=block_idx) | |
self.mlp = MLP(config) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
attention_mask: Optional[torch.BoolTensor] = None, | |
**kwargs, | |
) -> torch.FloatTensor: | |
residual = hidden_states | |
hidden_states = self.ln(hidden_states) | |
attn_outputs = self.mixer( | |
hidden_states, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
) | |
if isinstance(attn_outputs, tuple): | |
attn_outputs = attn_outputs[0] | |
attn_outputs = self.resid_dropout(attn_outputs) | |
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) | |
hidden_states = attn_outputs + feed_forward_hidden_states + residual | |
return hidden_states | |
class CausalLMHead(nn.Module): | |
"""Causal Language Modeling head. | |
Reference: | |
Improving Language Understanding by Generative Pre-Training. | |
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. | |
""" | |
def __init__(self, config: PretrainedConfig) -> None: | |
super().__init__() | |
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
self.linear = nn.Linear(config.n_embd, config.vocab_size) | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
hidden_states = self.ln(hidden_states) | |
logits = self.linear(hidden_states).to(torch.float32) | |
return logits | |
class CausalLMLoss(nn.Module): | |
"""Causal Language Modeling loss. | |
Reference: | |
Improving Language Understanding by Generative Pre-Training. | |
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. | |
""" | |
def __init__(self, shift_labels: bool = True) -> None: | |
super().__init__() | |
self.shift_labels = shift_labels | |
self.loss_fct = nn.CrossEntropyLoss() | |
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor: | |
if self.shift_labels: | |
logits = logits[..., :-1, :].contiguous() | |
labels = labels[..., 1:].contiguous() | |
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) | |
return loss | |
class PhiPreTrainedModel(PreTrainedModel): | |
"""Phi pre-trained model.""" | |
config_class = PhiConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = False | |
_no_split_modules = ["ParallelBlock"] | |
def __init__(self, *inputs, **kwargs) -> None: | |
super().__init__(*inputs, **kwargs) | |
def _init_weights(self, module: nn.Module) -> None: | |
if isinstance(module, (nn.Linear,)): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
if module.bias is not None: | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
# def prepare_inputs_for_generation( | |
# self, | |
# input_ids: torch.LongTensor, | |
# past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
# attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, | |
# **kwargs, | |
# ) -> Dict[str, Any]: | |
# if past_key_values is None or not (isinstance(past_key_values, InferenceParams)): | |
# past_key_values = InferenceParams( | |
# max_seqlen=self.config.n_positions, | |
# max_batch_size=input_ids.shape[0], | |
# seqlen_offset=0, | |
# batch_size_offset=0, | |
# key_value_memory_dict={}, | |
# lengths_per_sample=None, | |
# ) | |
# else: | |
# # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids` | |
# past_key_values.seqlen_offset = input_ids.shape[1] - 1 | |
# input_ids = input_ids[:, -1].unsqueeze(-1) | |
# return { | |
# "input_ids": input_ids, | |
# "past_key_values": past_key_values, | |
# "attention_mask": attention_mask, | |
# } | |
def prepare_inputs_for_generation( | |
self, | |
input_ids: torch.LongTensor = None, # Make `input_ids` optional. | |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, # Add `inputs_embeds` argument. | |
**kwargs, | |
) -> Dict[str, Any]: | |
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)): | |
past_key_values = InferenceParams( | |
max_seqlen=self.config.n_positions, | |
max_batch_size=(input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0]), | |
seqlen_offset=0, | |
batch_size_offset=0, | |
key_value_memory_dict={}, | |
lengths_per_sample=None, | |
) | |
else: | |
if input_ids is not None: | |
past_key_values.seqlen_offset = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
elif inputs_embeds is not None: | |
past_key_values.seqlen_offset = inputs_embeds.shape[1] - 1 | |
inputs_embeds = inputs_embeds if past_key_values.seqlen_offset == 0 else None | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"attention_mask": attention_mask, | |
"inputs_embeds": inputs_embeds, # Add `inputs_embeds` to the returned dict. | |
} | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation | |
# def prepare_inputs_for_generation( | |
# self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
# ): | |
# if past_key_values is not None: | |
# if isinstance(past_key_values, Cache): | |
# cache_length = past_key_values.get_seq_length() | |
# past_length = past_key_values.seen_tokens | |
# max_cache_length = past_key_values.get_max_length() | |
# else: | |
# cache_length = past_length = past_key_values[0][0].shape[2] | |
# max_cache_length = None | |
# # Keep only the unprocessed tokens: | |
# # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as | |
# # input) | |
# if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
# input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
# # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# # input_ids based on the past_length. | |
# elif past_length < input_ids.shape[1]: | |
# input_ids = input_ids[:, past_length:] | |
# # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
# # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
# if ( | |
# max_cache_length is not None | |
# and attention_mask is not None | |
# and cache_length + input_ids.shape[1] > max_cache_length | |
# ): | |
# attention_mask = attention_mask[:, -max_cache_length:] | |
# position_ids = kwargs.get("position_ids", None) | |
# if attention_mask is not None and position_ids is None: | |
# # create position_ids on the fly for batch generation | |
# position_ids = attention_mask.long().cumsum(-1) - 1 | |
# position_ids.masked_fill_(attention_mask == 0, 1) | |
# if past_key_values: | |
# position_ids = position_ids[:, -input_ids.shape[1] :] | |
# # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
# if inputs_embeds is not None and past_key_values is None: | |
# model_inputs = {"inputs_embeds": inputs_embeds} | |
# else: | |
# model_inputs = {"input_ids": input_ids} | |
# model_inputs.update( | |
# { | |
# "position_ids": position_ids, | |
# "past_key_values": past_key_values, | |
# "use_cache": kwargs.get("use_cache"), | |
# "attention_mask": attention_mask, | |
# } | |
# ) | |
# return model_inputs | |
class PhiModel(PhiPreTrainedModel): | |
"""Phi model.""" | |
_keys_to_ignore_on_load_missing = [""] | |
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] | |
def __init__(self, config: PhiConfig) -> None: | |
super().__init__(config) | |
self.embd = Embedding(config) | |
self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]) | |
self.gradient_checkpointing = False | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Embedding: | |
return self.embd.wte | |
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: | |
self.embd.wte = new_embeddings | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
attention_mask: Optional[torch.BoolTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
if inputs_embeds is None: | |
hidden_states = self.embd(input_ids) | |
elif inputs_embeds is not None: | |
hidden_states = inputs_embeds | |
for layer in self.h: | |
hidden_states = layer( | |
hidden_states, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
) | |
return hidden_states | |
class PhiForCausalLM(PhiPreTrainedModel): | |
"""Phi for Causal Language Modeling.""" | |
_keys_to_ignore_on_load_missing = [""] | |
_keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] | |
def __init__(self, config: PhiConfig) -> None: | |
super().__init__(config) | |
self.transformer = PhiModel(config) | |
self.lm_head = CausalLMHead(config) | |
self.loss = CausalLMLoss() | |
self.post_init() | |
def get_output_embeddings(self) -> nn.Linear: | |
return self.lm_head.linear | |
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: | |
self.lm_head.linear = new_embeddings | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, | |
attention_mask: Optional[torch.BoolTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
**kwargs, | |
) -> CausalLMOutputWithPast: | |
hidden_states = self.transformer(input_ids, inputs_embeds = inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask) | |
lm_logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
loss = self.loss(lm_logits, labels) | |
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values) | |