import gradio as gr import numpy as np import openai from sentence_transformers import SentenceTransformer from langchain.prompts import PromptTemplate from collections import Counter def process(api, caption, category, asr, ocr): openai.api_key = api preference = "兴趣标签" example = "例如,给定一个视频,它的\"标题\"为\"长安系最便宜的轿车,4W起很多人都看不上它,但我知道车只是代步工具,又需要什么面子呢" \ "!\",\"类别\"为\"汽车\",\"ocr\"为\"长安系最便宜的一款轿车\",\"asr\"为\"我不否认现在的国产和合资还有一定的差距," \ "但确实是他们让我们5万开了MP V8万开上了轿车,10万开张了ICV15万开张了大七座。\",\"{}\"生成机器人推断出合理的\"{}\"为\"" \ "长安轿车报价、最便宜的长安轿车、新款长安轿车\"。".format(preference, preference) prompt = PromptTemplate( input_variables=["preference", "caption", "ocr", "asr", "category", "example"], template="你是一个视频的\"{preference}\"生成机器人,根据输入的视频标题、类别、ocr、asr推理出合理的\"{preference}\",以多个多" "于两字的标签形式进行表达,以顿号隔开。{example}那么,给定一个新的视频,它的\"标题\"为\"{caption}\",\"类别\"为" "\"{category}\",\"ocr\"为\"{ocr}\",\"asr\"为\"{asr}\",请推断出该视频的\"{preference}\":" ) text = prompt.format(preference=preference, caption=caption, category=category, ocr=ocr, asr=asr, example=example) try: completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": text}], temperature=1.5, n=5 ) res = [] for j in range(5): ans = completion.choices[j].message["content"].strip() ans = ans.replace("\n", "") ans = ans.replace("。", "") ans = ans.replace(",", "、") res += ans.split('、') tag_count = Counter(res) tag_count = sorted(tag_count.items(), key=lambda x: x[1], reverse=True)[:10] tags_embed = np.load('./tag_data/tags_embed.npy') tags_dis = np.load('./tag_data/tags_dis.npy') candidate_tags = [_[0] for _ in tag_count] encoder = SentenceTransformer("hfl/chinese-roberta-wwm-ext-large") candidate_tags_embed = encoder.encode(candidate_tags) candidate_tags_dis = [np.sqrt(np.dot(_, _.T)) for _ in candidate_tags_embed] scores = np.dot(candidate_tags_embed, tags_embed.T) f = open('./tag_data/tags.txt', 'r') all_tags = [] for line in f.readlines(): all_tags.append(line.strip()) f.close() final_ans = [] for i in range(scores.shape[0]): for j in range(scores.shape[1]): score = scores[i][j] / (candidate_tags_dis[i] * tags_dis[j]) if score > 0.8: final_ans.append(all_tags[j]) print(final_ans) final_ans = Counter(final_ans) final_ans = sorted(final_ans.items(), key=lambda x: x[1], reverse=True)[:5] final_ans = [_[0] for _ in final_ans] return "、".join(final_ans) except: return 'api error' with gr.Blocks() as demo: text_api = gr.Textbox(label='OpenAI API key') text_caption = gr.Textbox(label='Caption') text_category = gr.Textbox(label='Category') text_asr = gr.Textbox(label='ASR') text_ocr = gr.Textbox(label='OCR') text_output = gr.Textbox(value='', label='Output') btn = gr.Button(value='Submit') btn.click(process, inputs=[text_api, text_caption, text_category, text_asr, text_ocr], outputs=[text_output]) if __name__ == "__main__": demo.launch(share=True)