Spaces:
Runtime error
Runtime error
File size: 37,814 Bytes
f2a6ef6 ca1e7f4 707a231 7994525 ca1e7f4 e893baa 7994525 ca1e7f4 f2a6ef6 707a231 7994525 f2a6ef6 707a231 7994525 707a231 7994525 707a231 7994525 707a231 7994525 e893baa 7994525 e893baa 7994525 e893baa 7994525 ca1e7f4 e893baa 7994525 e893baa 7994525 e893baa 7994525 e893baa 7994525 ca1e7f4 7994525 707a231 ca1e7f4 707a231 e893baa 707a231 e893baa 707a231 ca1e7f4 707a231 ca1e7f4 707a231 ca1e7f4 707a231 ca1e7f4 707a231 ca1e7f4 707a231 ca1e7f4 707a231 ca1e7f4 707a231 ca1e7f4 707a231 e893baa 707a231 ca1e7f4 707a231 ca1e7f4 707a231 ca1e7f4 707a231 ca1e7f4 707a231 e893baa 707a231 e893baa 707a231 e893baa 707a231 ca1e7f4 707a231 ca1e7f4 707a231 ca1e7f4 e893baa 707a231 e893baa 707a231 e893baa 707a231 e893baa 707a231 e893baa 707a231 ca1e7f4 707a231 f2a6ef6 7994525 f2a6ef6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import statsmodels.api as sm
import random
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import seaborn as sns
from itertools import combinations
# Set the layout to wide
st.set_page_config(layout="wide")
# Custom CSS to center title and header
center_css = """
<style>
h1, h2, h3, h6{
text-align: center;
}
</style>
"""
st.markdown(center_css, unsafe_allow_html=True)
def create_agreement_heatmap(df):
# Create a list of unique annotators and sort them by annotator index
unique_annotators = sorted(df["annotator_index"].unique())
# Initialize the agreement matrix and count matrix
agreement_matrix = pd.DataFrame(
np.nan, index=unique_annotators, columns=unique_annotators
)
count_matrix = pd.DataFrame(
np.zeros((len(unique_annotators), len(unique_annotators))),
index=unique_annotators,
columns=unique_annotators,
)
# Group by (instruction, output_1, output_2)
grouped = df.groupby(["instruction", "output_1", "output_2"])
for name, group in grouped:
# Extract annotators and their preferences
annotators = group["annotator_index"].values
preferences = group["preference"].values
# Iterate over all pairs of annotators in the group
for (annotator1, pref1), (annotator2, pref2) in combinations(
zip(annotators, preferences), 2
):
if pref1 == pref2: # If they agree
if pd.isna(agreement_matrix.loc[annotator1, annotator2]):
agreement_matrix.loc[annotator1, annotator2] = 0
if pd.isna(agreement_matrix.loc[annotator2, annotator1]):
agreement_matrix.loc[annotator2, annotator1] = 0
agreement_matrix.loc[annotator1, annotator2] += 1
agreement_matrix.loc[annotator2, annotator1] += 1
count_matrix.loc[annotator1, annotator2] += 1
count_matrix.loc[annotator2, annotator1] += 1
# Normalize the agreement matrix by the count matrix
for i in unique_annotators:
for j in unique_annotators:
if count_matrix.loc[i, j] > 0:
agreement_matrix.loc[i, j] /= count_matrix.loc[i, j]
# Plot the heatmap
plt.figure(figsize=(10, 10)) # Make the heatmap square
sns.heatmap(
agreement_matrix,
annot=True,
fmt=".2f",
cmap="PiYG",
cbar=True,
mask=np.isnan(agreement_matrix),
vmin=0.0,
vmax=1.0,
square=True,
)
plt.title("Interannotator Agreement Heatmap")
plt.xlabel("Annotator")
plt.ylabel("Annotator")
plt.tight_layout()
return agreement_matrix
def prep_rankings_table(df, y_column):
# Create a copy of the dataframe.
df_copy = df.copy()
# Select the columns we care about, sort by the y column, and reset the index.
df_copy = (
df_copy[
[
"model_name",
y_column,
"num_words_mean",
]
]
.sort_values(y_column, ascending=False)
.reset_index()
)
# Create a rank column.
df_copy["rank"] = df_copy.index + 1
# Round the y column.
df_copy[y_column] = df_copy[y_column].round(2)
# Fix the order.
df_copy = df_copy[["rank", "model_name", y_column, "num_words_mean"]]
return df_copy
def get_preference(preference_score):
rounded_preference_score = int(preference_score.round(0).iloc[0])
return get_preference_from_rounded_score(rounded_preference_score)
# if rounded_preference_score == 2:
# return "[2>1]"
# elif rounded_preference_score == 1:
# return "[1>2]"
def get_preference_from_rounded_score(score):
if score == 2:
return "[2>1]"
elif score == 1:
return "[1>2]"
return "[1=2]"
# raise ValueError(f"Invalid score: {score}")
def is_unanimous(series):
if len(set(series.tolist())) == 1:
return True
return False
def app():
fixed_model = "gpt4_1106_preview"
# Ensure to initialize session state variables if they do not exist
if "selected_instruction" not in st.session_state:
st.session_state.selected_instruction = None
if "selected_model" not in st.session_state:
st.session_state.selected_model = "gpt4"
if "selected_output_human_annotations" not in st.session_state:
st.session_state.selected_output_human_annotations = None
if "selected_judge" not in st.session_state:
st.session_state.selected_judge = None
if "selected_dataset" not in st.session_state:
st.session_state.selected_dataset = "NEW"
if "instruction_options" not in st.session_state:
st.session_state.instruction_options = []
if "instruction_options_human_annotations" not in st.session_state:
st.session_state.instruction_options_human_annotations = []
if "selected_instruction_human_annotations" not in st.session_state:
st.session_state.selected_instruction_human_annotations = None
# Function to update the instruction options based on selected dataset
def update_instruction_options():
selected_dataset = st.session_state.dataset_selector
if selected_dataset == "all" or selected_dataset == "NEW":
instruction_options = df_response_judging["instruction"].unique().tolist()
elif (
selected_dataset == "None"
or selected_dataset is None
or str(selected_dataset) == ""
):
instruction_options = (
df_response_judging[pd.isna(df_response_judging["dataset"])][
"instruction"
]
.unique()
.tolist()
)
else:
instruction_options = (
df_response_judging[df_response_judging["dataset"] == selected_dataset][
"instruction"
]
.unique()
.tolist()
)
st.session_state.instruction_options = instruction_options
def update_instruction_options_human_annotations():
selected_dataset = st.session_state.dataset_selector_human_annotations
if selected_dataset == "all" or selected_dataset == "NEW":
instruction_options = df_human_annotations["instruction"].unique().tolist()
elif (
selected_dataset == "None"
or selected_dataset is None
or str(selected_dataset) == ""
):
instruction_options = (
df_human_annotations[pd.isna(df_human_annotations["dataset"])][
"instruction"
]
.unique()
.tolist()
)
else:
instruction_options = (
df_human_annotations[
df_human_annotations["dataset"] == selected_dataset
]["instruction"]
.unique()
.tolist()
)
st.session_state.instruction_options_human_annotations = instruction_options
def update_instruction():
st.session_state.selected_instruction = st.session_state.instruction_selector
def update_model():
st.session_state.selected_model = st.session_state.model_selector
def update_judge():
st.session_state.selected_judge = st.session_state.judge_selector
def randomize_selection():
st.session_state.dataset_selector = random.choice(
["all"] + df_response_judging["dataset"].dropna().unique().tolist()
)
st.session_state.selected_model = random.choice(model_options)
update_instruction_options()
st.session_state.selected_instruction = random.choice(
st.session_state.instruction_options
)
def randomize_selection_human_annotations():
st.session_state.dataset_selector_human_annotations = random.choice(
["all"] + df_human_annotations["dataset"].dropna().unique().tolist()
)
update_instruction_options()
st.session_state.selected_instruction_human_annotations = random.choice(
st.session_state.instruction_options_human_annotations
)
st.session_state.selected_output_human_annotations = random.choice(
df_human_annotations[
df_human_annotations["instruction"]
== st.session_state.selected_instruction_human_annotations
]["output_2"]
.dropna()
.tolist()
)
st.title("🦙 AlpacaEval Explorer 🦙")
st.markdown(
"###### An interactive tool to analyze and explore the data behind the [AlpacaEval Leaderboard](https://tatsu-lab.github.io/alpaca_eval/) in more depth"
)
st.markdown(
"###### Created and maintained by [Justin Zhao](https://x.com/justinxzhao)"
)
col1, col2, col3 = st.columns(3)
with col1:
with st.expander("About AlpacaEval"):
st.markdown(
"""- [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) is an evaluation benchmark to assess the performance of large language models (LLMs).
- It has high correlation with [Chatbot Arena](https://chat.lmsys.org/), and is a fast and affordable benchmark for chat LLMs that uses LLMs (specifically GPT-4) to estimate response quality.
- LLM responses are assessed in a pairwise fashion (arena), where each model's responses are compared to a reference model's responses.
- All reference responses are generated by GPT-4-1106. The LLM Judge is also GPT-4-1106.
"""
)
with col2:
with st.expander("About this tool"):
st.markdown(
"""There are 3 main tabs.
1. Use the **Data explorer** to look at individual pairwise battles between models.
2. Use the **Length bias explorer** to look at how response lengths affect win rates.
3. Use the **Human cross annotations** tab to explore the human cross annotations.
"""
)
with col3:
with st.expander("Motivation"):
st.markdown(
"""
- Several arena-based benchmarks have demonstrated that a clear ranking among LLMs can be established, but there is a general dearth of analysis and understanding as to why the rankings are the way they are. For example, it's hard to discern how factors like feel and style
are weighed against correctness.
- I created this tool to provide a more interactive and intuitive way to explore the data behind the AlpacaEval leaderboard. It allows users to easily compare responses between models, look at individual battles, and analyze how response lengths affect win rates.
- If you have any feedback on the tool, please reach out.
"""
)
outer_tabs = st.tabs(
[
"Data explorer",
"Length bias explorer",
"Human cross annotations",
]
)
# Load the data
df_human_annotations = pd.read_json("data/alpaca_farm_human_crossannotations.json")
df = pd.read_json("data/model_win_rates.jsonl", lines=True, orient="records")
# df_responses = pd.read_json("data/df_responses.jsonl", lines=True, orient="records")
df_response_judging = pd.read_json(
"data/df_response_judging.jsonl", lines=True, orient="records"
)
# Prepare the model selector options
model_options = df_response_judging["generator_2"].unique().tolist()
with outer_tabs[1]:
# Define the preset groups
presets = {
"gpt": df[df["model_name"].str.contains("openai|gpt", case=False)][
"model_name"
].tolist(),
"claude": df[df["model_name"].str.contains("claude", case=False)][
"model_name"
].tolist(),
"moa": df[df["model_name"].str.contains("moa", case=False)][
"model_name"
].tolist(),
"llama": df[df["model_name"].str.contains("llama", case=False)][
"model_name"
].tolist(),
"custom": [],
}
# Add radio button for preset groups
preset_selection = st.radio(
"Select a preset group of models or choose 'custom' to select manually.",
options=["custom", "gpt", "claude", "moa", "llama"],
)
# Add multiselect for custom model selection
if preset_selection == "custom":
selected_models = st.multiselect(
"Select models to highlight", options=df["model_name"].unique()
)
else:
selected_models = presets[preset_selection]
st.divider()
def create_scatter_plot(df, y_column, selected_models, title):
fig = go.Figure()
# Add scatter plots for num_words_mean and num_tokens_mean
fig.add_trace(
go.Scatter(
x=df["num_words_mean"],
y=df[y_column],
mode="markers",
name="words",
text=df["model_name"],
marker=dict(size=5, color="skyblue"),
showlegend=True,
)
)
fig.add_trace(
go.Scatter(
x=df["num_tokens_mean"],
y=df[y_column],
mode="markers",
name="tokens",
text=df["model_name"],
marker=dict(size=5, color="orange"),
showlegend=True,
visible="legendonly", # Make 'words' trace initially visible only in legend
)
)
# Highlight selected models
if selected_models:
selected_data = df[df["model_name"].isin(selected_models)]
fig.add_trace(
go.Scatter(
x=selected_data["num_words_mean"],
y=selected_data[y_column],
mode="markers",
name="selected words",
text=selected_data["model_name"],
marker=dict(size=10, color="blue"),
showlegend=True,
)
)
fig.add_trace(
go.Scatter(
x=selected_data["num_tokens_mean"],
y=selected_data[y_column],
mode="markers",
name="selected tokens",
text=selected_data["model_name"],
marker=dict(size=10, color="orangered"),
showlegend=True,
visible="legendonly", # Make 'selected words' trace initially visible only in legend
)
)
# Add trendlines
def add_trendline(fig, x, y, name, color, visibility="legendonly"):
X = sm.add_constant(df[x])
model = sm.OLS(df[y], X).fit()
trendline = model.predict(X)
fig.add_trace(
go.Scatter(
x=df[x],
y=trendline,
mode="lines",
name=f"{name} trendline",
line=dict(color=color, width=2),
visible=visibility, # Control the initial visibility
)
)
return model.rsquared
r_squared_words = add_trendline(
fig, "num_words_mean", y_column, "words", "blue", visibility=True
)
r_squared_tokens = add_trendline(
fig, "num_tokens_mean", y_column, "tokens", "orangered"
)
# Update layout with titles and labels
fig.update_layout(
xaxis_title="Mean length",
yaxis_title=(
"Win rate"
if y_column == "win_rate"
else (
"LC Win Rate"
if y_column == "length_controlled_winrate"
else "Discrete Win Rate"
)
),
title=title,
legend_title="Legend",
)
return fig, r_squared_words, r_squared_tokens
st.markdown("#### Overall win rate")
y_column1 = "length_controlled_winrate"
y_column2 = "win_rate"
y_column3 = "discrete_win_rate"
fig1, r_squared_words_1, r_squared_tokens_1 = create_scatter_plot(
df, y_column1, selected_models, "Length-Controlled Win Rate"
)
fig2, r_squared_words_2, r_squared_tokens_2 = create_scatter_plot(
df, y_column2, selected_models, "Win Rate"
)
fig3, r_squared_words_3, r_squared_tokens_3 = create_scatter_plot(
df, y_column3, selected_models, "Discrete Win Rate"
)
# Create tabs for each chart
tab1, tab2, tab3 = st.tabs(["LC Win Rate", "Win Rate", "Discrete Win Rate"])
with tab1:
col1, col2 = st.columns([3, 2])
col1.plotly_chart(fig1)
col2.markdown("#### Rankings")
prepped_df = prep_rankings_table(df, "length_controlled_winrate")
col2.dataframe(
prepped_df,
hide_index=True,
)
with st.expander("Trendline R²"):
st.markdown(
f"- R² (Words vs {y_column1}): {r_squared_words_1:.2f} \n- R² (Tokens vs {y_column1}): {r_squared_tokens_1:.2f}"
)
with tab2:
col1, col2 = st.columns([3, 2])
col1.plotly_chart(fig2)
col2.markdown("#### Rankings")
prepped_df = prep_rankings_table(df, "win_rate")
col2.dataframe(
prepped_df,
hide_index=True,
)
with st.expander("Trendline R²"):
st.markdown(
f"- R² (Words vs {y_column2}): {r_squared_words_2:.2f} \n- R² (Tokens vs {y_column2}): {r_squared_tokens_2:.2f}"
)
with tab3:
col1, col2 = st.columns([3, 2])
col1.plotly_chart(fig3)
col2.markdown("#### Rankings")
prepped_df = prep_rankings_table(df, "discrete_win_rate")
col2.dataframe(
prepped_df,
hide_index=True,
)
with st.expander("Trendline R²"):
st.markdown(
f"- R² (Words vs {y_column3}): {r_squared_words_3:.2f}\n- R² (Tokens vs {y_column3}): {r_squared_tokens_3:.2f}"
)
st.markdown("#### Length bias in battles")
df_response_judging_copy = df_response_judging.copy()
if not selected_models:
df_response_judging_copy["output_1_num_words"] = df_response_judging_copy[
"output_1"
].apply(lambda x: len(x.split()))
df_response_judging_copy["output_2_num_words"] = df_response_judging_copy[
"output_2"
].apply(lambda x: len(x.split()))
df_response_judging_copy["output_num_words_diff"] = (
df_response_judging_copy["output_1_num_words"]
- df_response_judging_copy["output_2_num_words"]
)
df_response_judging_copy["assigned_preference"] = (
df_response_judging_copy["preference"]
.round(0)
.apply(get_preference_from_rounded_score)
)
else:
df_response_judging_copy = df_response_judging_copy[
df_response_judging_copy["generator_2"].isin(selected_models)
]
df_response_judging_copy["output_1_num_words"] = df_response_judging_copy[
"output_1"
].apply(lambda x: len(x.split()))
df_response_judging_copy["output_2_num_words"] = df_response_judging_copy[
"output_2"
].apply(lambda x: len(x.split()))
df_response_judging_copy["output_num_words_diff"] = (
df_response_judging_copy["output_1_num_words"]
- df_response_judging_copy["output_2_num_words"]
)
df_response_judging_copy["assigned_preference"] = (
df_response_judging_copy["preference"]
.round(0)
.apply(get_preference_from_rounded_score)
)
col1, col2 = st.columns(2)
fig = px.scatter(
df_response_judging_copy,
x="output_1_num_words",
y="output_2_num_words",
color="assigned_preference",
title=f"Pairwise preference based on response length",
labels={
"output_1_num_words": f"{fixed_model} (1) number of words",
"output_2_num_words": "Target model (2) number of words",
},
color_discrete_map={
"[1>2]": "blue",
"[2>1]": "orangered",
"[1=2]": "green",
},
)
col1.plotly_chart(fig)
# Plot of output_num_words_diff histogram, colored by assigned_preference.
fig = px.histogram(
df_response_judging_copy,
x="output_num_words_diff",
color="assigned_preference",
title=f"Pairwise preference counts based on difference in response length",
color_discrete_map={
"[1>2]": "blue",
"[2>1]": "orangered",
"[1=2]": "green",
},
range_x=[-500, 500],
labels={
"output_num_words_diff": "Length difference in words between gpt4_1106_preview and target model"
},
)
col2.plotly_chart(fig)
with st.expander("Raw data"):
st.dataframe(df)
# Data explorer
with outer_tabs[0]:
# Add randomize button at the top of the app
st.markdown("#### Choose example")
st.button(
":game_die: Randomize!",
on_click=randomize_selection,
type="primary",
)
left_col, right_col = st.columns([1, 3])
st.session_state.selected_dataset = left_col.selectbox(
"Select Dataset",
["all"] + df_response_judging["dataset"].dropna().unique().tolist(),
key="dataset_selector",
on_change=update_instruction_options,
)
update_instruction_options()
st.session_state.selected_instruction = right_col.selectbox(
f"Select Instruction ({len(st.session_state.instruction_options)} unique instructions)",
st.session_state.instruction_options,
key="instruction_selector",
on_change=update_instruction,
index=(
st.session_state.instruction_options.index(
st.session_state.selected_instruction
)
if st.session_state.selected_instruction
in st.session_state.instruction_options
else 0
),
)
# All the models.
all_models_judgings_details = df_response_judging[
(df_response_judging["generator_1"] == fixed_model)
& (
df_response_judging["instruction"]
== st.session_state.selected_instruction
)
]
st.divider()
st.markdown(f"#### Selected instruction")
st.info(st.session_state.selected_instruction)
st.divider()
st.markdown(f"#### Overall Battles")
all_models_judgings_details["output_1_num_words"] = all_models_judgings_details[
"output_1"
].apply(lambda x: len(x.split()))
all_models_judgings_details["output_2_num_words"] = all_models_judgings_details[
"output_2"
].apply(lambda x: len(x.split()))
all_models_judgings_details["output_num_words_diff"] = (
all_models_judgings_details["output_1_num_words"]
- all_models_judgings_details["output_2_num_words"]
)
all_models_judgings_details["assigned_preference"] = (
all_models_judgings_details["preference"]
.round(0)
.apply(get_preference_from_rounded_score)
)
# st.write(all_models_judgings_details)
col1, col2, col3 = st.columns(3)
fig = px.histogram(
all_models_judgings_details,
x="output_num_words_diff",
color="assigned_preference",
title=f"Pairwise preference counts based on difference in response length",
color_discrete_map={
"[1>2]": "blue",
"[2>1]": "orangered",
"[1=2]": "green",
},
range_x=[-500, 500],
labels={
"output_num_words_diff": "Difference in number of words between response 1 and 2.",
"assigned_preference": "Assigned Preference",
},
)
col1.plotly_chart(fig)
# Plot of assigned preference counts.
fig = px.histogram(
all_models_judgings_details,
x="assigned_preference",
title=f"Assigned preferences for {fixed_model} vs. all models",
)
col2.plotly_chart(fig)
# Models that are better than the fixed model.
num_words_for_fixed_model = len(
all_models_judgings_details.iloc[0]["output_1"].split()
)
better_models = all_models_judgings_details[
all_models_judgings_details["assigned_preference"] == "[2>1]"
]
shorter_models = better_models[
better_models["output_2_num_words"] <= num_words_for_fixed_model
]
longer_models = better_models[
better_models["output_2_num_words"] > num_words_for_fixed_model
]
col3.markdown(
f"##### Models that are better than {fixed_model} ({num_words_for_fixed_model})"
)
if shorter_models.size != 0:
shorter_models_string = ""
for _, shorter_model in shorter_models.iterrows():
if shorter_model["generator_2"] != fixed_model:
shorter_models_string += f"- {shorter_model['generator_2']} ({shorter_model['output_2_num_words']})\n"
col3.markdown("**With shorter or equal length responses:**")
col3.markdown(shorter_models_string)
else:
col3.write("None")
if longer_models.size != 0:
longer_models_string = ""
for _, longer_model in longer_models.iterrows():
if longer_model["generator_2"] != fixed_model:
longer_models_string += f"- {longer_model['generator_2']} ({longer_model['output_2_num_words']})\n"
col3.markdown("**With longer responses:**")
col3.markdown(longer_models_string)
else:
col3.write("None")
# Judging details.
st.markdown(f"#### Individual Battle Details")
judging_details = df_response_judging[
(df_response_judging["generator_1"] == fixed_model)
& (df_response_judging["generator_2"] == st.session_state.selected_model)
& (
df_response_judging["instruction"]
== st.session_state.selected_instruction
)
]
# if not judging_details.empty:
if not judging_details["preference"].empty:
preference = get_preference(judging_details["preference"])
if preference == "[1>2]":
st.write(
f"**{fixed_model}** is better than **{st.session_state.selected_model}**"
)
else:
st.write(
f"**{st.session_state.selected_model}** is better than **{fixed_model}**"
)
st.write(
f"- **Score:** {judging_details['preference'].round(2).item()}\n- **Assigned preference:** {preference}"
)
with st.expander("Additional information"):
st.write(
judging_details[
[
"instruction",
"time_per_example",
"price_per_example",
"raw_completion",
]
]
)
# Create two columns for model selectors
st.markdown("#### Responses")
col1, col2 = st.columns(2)
with col1:
st.selectbox(
"Reference model",
[fixed_model],
key="fixed_model",
)
# Get the response string for the fixed model
if st.session_state.selected_instruction:
preference = get_preference(judging_details["preference"])
response_details_fixed = df_response_judging[
(
df_response_judging["instruction"]
== st.session_state.selected_instruction
)
& (df_response_judging["generator_1"] == fixed_model)
].iloc[0]
st.write(
f'Number of words: {len(response_details_fixed["output_1"].split())}'
)
# Display the response string
if preference == "[1>2]":
st.success(response_details_fixed["output_1"])
else:
st.error(response_details_fixed["output_1"])
with col2:
st.session_state.selected_model = st.selectbox(
"Select Model",
model_options,
key="model_selector",
on_change=update_model,
index=(
model_options.index(st.session_state.selected_model)
if st.session_state.selected_model
else 0
),
)
# Get the response string for the selected model
if (
st.session_state.selected_model
and st.session_state.selected_instruction
):
response_details_dynamic = df_response_judging[
(
df_response_judging["instruction"]
== st.session_state.selected_instruction
)
& (
df_response_judging["generator_2"]
== st.session_state.selected_model
)
].iloc[0]
st.write(
f'Number of words: {len(response_details_dynamic["output_2"].split())}'
)
# Display the response string
if preference == "[2>1]":
st.success(response_details_dynamic["output_2"])
else:
st.error(response_details_dynamic["output_2"])
with outer_tabs[2]:
st.markdown(
"""The original [AlpacaFarm paper](https://arxiv.org/abs/2305.14387) includes a release of 20K human preferences between a given and reference model on the AlpacaFarm evaluation set. 2.5K of these are cross-annotations (4 humans annotating the same 650 examples). This tab allows you to explore the **human cross-annotations** in more detail."""
)
st.markdown("#### Choose example")
st.button(
":game_die: Randomize!",
on_click=randomize_selection_human_annotations,
type="primary",
key="randomize_button_human_annotations",
)
left_col, right_col = st.columns([1, 3])
st.session_state.selected_dataset_human_annotations = left_col.selectbox(
"Select Dataset",
["all"] + df_human_annotations["dataset"].dropna().unique().tolist(),
key="dataset_selector_human_annotations",
on_change=update_instruction_options_human_annotations,
)
update_instruction_options_human_annotations()
st.session_state.selected_instruction_human_annotations = right_col.selectbox(
f"Select Instruction ({len(st.session_state.instruction_options_human_annotations)} unique instructions)",
st.session_state.instruction_options_human_annotations,
key="instruction_selector_human_annotations",
on_change=update_instruction,
index=(
st.session_state.instruction_options_human_annotations.index(
st.session_state.selected_instruction_human_annotations
)
if st.session_state.selected_instruction_human_annotations
in st.session_state.instruction_options_human_annotations
else 0
),
)
st.divider()
st.markdown(f"#### Selected instruction")
st.info(st.session_state.selected_instruction_human_annotations)
st.divider()
# Need an output column?
st.markdown("#### Responses")
col1, col2 = st.columns(2)
with col1:
st.selectbox(
"Output 1 (reference)",
df_human_annotations.loc[
df_human_annotations["instruction"]
== st.session_state.selected_instruction_human_annotations
]["output_1"]
.unique()
.tolist(),
key="output_selector_human_annotations_fuxed",
index=0,
# label_visibility="collapsed",
)
# Get the response string for the fixed model
if st.session_state.selected_instruction_human_annotations:
response_details_fixed = df_human_annotations[
(
df_human_annotations["instruction"]
== st.session_state.selected_instruction_human_annotations
)
].iloc[0]
st.write(
f'Number of words: {len(response_details_fixed["output_1"].split())}'
)
# Display the response string
st.info(response_details_fixed["output_1"])
with col2:
st.session_state.selected_output_human_annotations = st.selectbox(
"Output 2",
df_human_annotations.loc[
df_human_annotations["instruction"]
== st.session_state.selected_instruction_human_annotations
]["output_2"]
.dropna()
.tolist(),
key="output_selector_human_annotations",
index=0,
# label_visibility="collapsed",
)
# Get the response string for the selected model
if (
st.session_state.selected_output_human_annotations
and st.session_state.selected_instruction_human_annotations
):
response_details_dynamic = df_human_annotations[
(
df_human_annotations["instruction"]
== st.session_state.selected_instruction_human_annotations
)
& (
df_human_annotations["output_2"]
== st.session_state.selected_output_human_annotations
)
].iloc[0]
st.write(
f'Number of words: {len(response_details_dynamic["output_2"].split())}'
)
st.info(response_details_dynamic["output_2"])
st.divider()
# Judging details.
st.markdown(f"#### Human Judging")
col1, col2 = st.columns(2)
with col1:
judging_details = df_human_annotations[
(df_human_annotations["output_1"] == response_details_fixed["output_1"])
& (
df_human_annotations["output_2"]
== response_details_dynamic["output_2"]
)
]
judging_details["assigned_preference"] = judging_details[
"preference"
].apply(get_preference_from_rounded_score)
is_unanimous_value = is_unanimous(judging_details["preference"])
st.write("**Unanimous?** ", is_unanimous_value)
# Draw a histogram of preference.
fig = px.histogram(
judging_details,
x="assigned_preference",
)
fig.update_layout(xaxis_title="Preference")
st.plotly_chart(fig)
with st.expander("Data details"):
st.dataframe(
judging_details[["annotator_index", "assigned_preference"]],
hide_index=True,
)
# Generate the heatmap figure
with col2:
agreement_matrix = create_agreement_heatmap(df_human_annotations)
# st.write(
# f"**Overall interannotator agreement:** {agreement_matrix.mean().mean():.3f}"
# )
with st.expander(
f"**Overall interannotator agreement:** {agreement_matrix.mean().mean():.3f}"
):
st.pyplot(plt)
if __name__ == "__main__":
app()
|