File size: 9,183 Bytes
169dd3c
a056e0b
7ee6d4e
 
 
169dd3c
a056e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee6d4e
 
 
 
 
 
 
 
a056e0b
 
 
 
7ee6d4e
 
 
 
a056e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee6d4e
a056e0b
 
 
 
 
 
 
7ee6d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a056e0b
7ee6d4e
a056e0b
 
 
 
 
 
7ee6d4e
a056e0b
 
7ee6d4e
a056e0b
7ee6d4e
 
 
a056e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee6d4e
 
a056e0b
 
 
 
 
7ee6d4e
 
 
a056e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee6d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a056e0b
7ee6d4e
 
 
 
 
a056e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee6d4e
a056e0b
 
 
 
 
 
 
 
 
7ee6d4e
a056e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import streamlit as st
import pandas as pd
from PIL import Image
import base64
from io import BytesIO

# Define constants
MAJOR_A_WIN = "A>>B"
MINOR_A_WIN = "A>B"
MINOR_B_WIN = "B>A"
MAJOR_B_WIN = "B>>A"
TIE = "A=B"


def is_consistent(rating, reverse_rating):
    if rating in {MAJOR_A_WIN, MINOR_A_WIN} and reverse_rating in {
        MAJOR_B_WIN,
        MINOR_B_WIN,
    }:
        return True
    if rating in {MAJOR_B_WIN, MINOR_B_WIN} and reverse_rating in {
        MAJOR_A_WIN,
        MINOR_A_WIN,
    }:
        return True
    if reverse_rating in {MAJOR_A_WIN, MINOR_A_WIN} and rating in {
        MAJOR_B_WIN,
        MINOR_B_WIN,
    }:
        return True
    if reverse_rating in {MAJOR_B_WIN, MINOR_B_WIN} and rating in {
        MAJOR_A_WIN,
        MINOR_A_WIN,
    }:
        return True
    if reverse_rating in {TIE} and rating in {TIE}:
        return True
    if reverse_rating in {TIE} and rating not in {TIE}:
        return False
    if rating in {TIE} and reverse_rating not in {TIE}:
        return False
    return False


# Function to convert PIL image to base64
def pil_to_base64(img):
    buffered = BytesIO()
    img.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return img_str


# Load your dataframes
df_test_set = pd.read_json("data/test_set.jsonl", lines=True)
df_responses = pd.read_json("data/responses.jsonl", lines=True)
df_response_judging = pd.read_json("data/response_judging.jsonl", lines=True)
df_leaderboard = (
    pd.read_csv("data/leaderboard_6_11.csv").sort_values("Rank").reset_index(drop=True)
)
df_leaderboard = df_leaderboard.rename(columns={"EI Score": "EI Score (95% CI)"})

# Prepare the scenario selector options
df_test_set["scenario_option"] = (
    df_test_set["emobench_id"].astype(str) + ": " + df_test_set["scenario"]
)
scenario_options = df_test_set["scenario_option"].tolist()

# Prepare the model selector options
model_options = df_responses["llm_responder"].unique().tolist()

# Prepare the judge selector options
judge_options = df_response_judging["llm_judge"].unique().tolist()

st.set_page_config(page_title="Language Model Council", page_icon="🧊", layout="wide")

# Create three columns
col1, col2, col3 = st.columns(3)

# Define CSS to make buttons take full space
full_width_button_css = """
<style>
div.stButton > button {
    width: 100%;
}
</style>
"""

st.markdown(full_width_button_css, unsafe_allow_html=True)

# Place a button in each column
with col1:
    if st.button("Blog"):
        st.write("Button 1 clicked")

with col2:
    if st.button("Paper"):
        st.write("Button 2 clicked")

with col3:
    if st.button("Github"):
        st.write("Button 3 clicked")

# Custom CSS to center title and header
center_css = """
<style>
h1, h2{
    text-align: center;
}
</style>
"""

st.markdown(center_css, unsafe_allow_html=True)

# Load an image
image = Image.open("img/lmc_icon.png")

# Convert the image to base64
img_base64 = pil_to_base64(image)

# HTML to center the image and embed base64 image
centered_image_html = f"""
<div style="text-align: center;">
    <img src="data:image/png;base64,{img_base64}" width="50"/>
</div>
"""

# Rendering the centered image
st.markdown(centered_image_html, unsafe_allow_html=True)

st.title("Language Model Council")
st.subheader("Benchmarking Foundation Models on Highly Subjective Tasks by Consensus")

# Create horizontal tabs
tabs = st.tabs(["Leaderboard Results", "Data Samples", "About Us"])

# Define content for each tab
with tabs[0]:
    st.dataframe(df_leaderboard)

with tabs[1]:
    st.markdown("### 1. Select a scenario.")
    # Create the selectors
    selected_scenario = st.selectbox(
        "Select Scenario", scenario_options, label_visibility="hidden"
    )

    # Get the selected scenario details
    if selected_scenario:
        selected_emobench_id = int(selected_scenario.split(": ")[0])
        scenario_details = df_test_set[
            df_test_set["emobench_id"] == selected_emobench_id
        ].iloc[0]

        # Display the detailed dilemma and additional information
        st.write(scenario_details["detailed_dilemma"])
        with st.expander("Additional Information"):
            st.write(f"**LLM Author:** {scenario_details['llm_author']}")
            st.write(f"**Problem:** {scenario_details['problem']}")
            st.write(f"**Relationship:** {scenario_details['relationship']}")
            st.write(f"**Scenario:** {scenario_details['scenario']}")

    st.divider()

    st.markdown("### 2. View responses.")

    # Create two columns for model selectors
    col1, col2 = st.columns(2)

    with col1:
        fixed_model = "qwen1.5-32B-Chat"
        st.selectbox(
            "Select Model", [fixed_model], key="fixed_model", label_visibility="hidden"
        )

        # Get the response string for the fixed model
        if selected_scenario:
            response_details_fixed = df_responses[
                (df_responses["emobench_id"] == selected_emobench_id)
                & (df_responses["llm_responder"] == fixed_model)
            ].iloc[0]

            # Display the response string
            st.write(response_details_fixed["response_string"])

    with col2:
        selected_model = st.selectbox(
            "Select Model", model_options, key="dynamic_model"
        )

        # Get the response string for the selected model
        if selected_model and selected_scenario:
            response_details_dynamic = df_responses[
                (df_responses["emobench_id"] == selected_emobench_id)
                & (df_responses["llm_responder"] == selected_model)
            ].iloc[0]

            # Display the response string
            st.write(response_details_dynamic["response_string"])

    st.divider()

    # Add bar charts for value counts of pairwise choices over all judges
    st.markdown("### 3. Response judging")

    st.markdown("#### All council members")
    col1, col2 = st.columns(2)

    with col1:
        st.write(f"**{fixed_model}** vs **{selected_model}**")
        pairwise_counts_left = df_response_judging[
            (df_response_judging["first_completion_by"] == fixed_model)
            & (df_response_judging["second_completion_by"] == selected_model)
        ]["pairwise_choice"].value_counts()
        st.bar_chart(pairwise_counts_left)

    with col2:
        st.write(f"**{selected_model}** vs **{fixed_model}**")
        pairwise_counts_right = df_response_judging[
            (df_response_judging["first_completion_by"] == selected_model)
            & (df_response_judging["second_completion_by"] == fixed_model)
        ]["pairwise_choice"].value_counts()

        st.bar_chart(pairwise_counts_right)

    # Create the llm_judge selector
    # st.write("**Select an individual judge for detailed inpsection.**")
    st.markdown("#### Individudal LLM judges")
    selected_judge = st.selectbox(
        "Select Judge", judge_options, label_visibility="hidden"
    )

    # Get the judging details for the selected judge and models
    if selected_judge and selected_scenario:
        col1, col2 = st.columns(2)

        judging_details_left = df_response_judging[
            (df_response_judging["llm_judge"] == selected_judge)
            & (df_response_judging["first_completion_by"] == fixed_model)
            & (df_response_judging["second_completion_by"] == selected_model)
        ].iloc[0]

        judging_details_right = df_response_judging[
            (df_response_judging["llm_judge"] == selected_judge)
            & (df_response_judging["first_completion_by"] == selected_model)
            & (df_response_judging["second_completion_by"] == fixed_model)
        ].iloc[0]

        if is_consistent(
            judging_details_left["pairwise_choice"],
            judging_details_right["pairwise_choice"],
        ):
            st.success("The judge ratings are consistent.", icon="✅")
        else:
            st.warning("The judge ratings are inconsistent.", icon="⚠️")

        # Display the judging details
        with col1:
            # st.write(f"**{fixed_model}** vs **{selected_model}**")
            if not judging_details_left.empty:
                st.write(
                    f"**Pairwise Choice:** {judging_details_left['pairwise_choice']}"
                )
                st.code(judging_details_left["judging_response_string"])
            else:
                st.write("No judging details found for the selected combination.")

        with col2:
            # st.write(f"**{selected_model}** vs **{fixed_model}**")
            if not judging_details_right.empty:
                st.write(
                    f"**Pairwise Choice:** {judging_details_right['pairwise_choice']}"
                )
                st.code(judging_details_right["judging_response_string"])
            else:
                st.write("No judging details found for the selected combination.")

with tabs[2]:
    st.write("This is the about us page.")
    # Add your about us content here
    st.write(
        """
    **Our Mission:**
    To provide the best service and data insights.

    **Our Team:**
    - Alice
    - Bob
    - Charlie
    """
    )