File size: 6,558 Bytes
9d22eee
2a5f9fb
 
df66f6e
 
cf10aa9
efeee6d
b5474e9
9d22eee
 
 
314f91a
2a5f9fb
 
 
 
 
 
 
 
 
 
6783fa0
cf10aa9
 
2a5f9fb
b5474e9
efeee6d
9d22eee
 
 
 
b5474e9
ba18c73
9d22eee
cf10aa9
 
 
 
 
72b38a9
 
 
 
 
cf10aa9
 
 
9d22eee
8d1d021
9d22eee
 
 
 
 
 
567d2b9
6ef2c5b
e046e31
0109b82
 
 
111e1ed
6783fa0
9d22eee
 
 
2a5f9fb
b5474e9
efeee6d
2a5f9fb
 
 
 
567d2b9
2a5f9fb
567d2b9
2a5f9fb
 
b5474e9
efeee6d
2a5f9fb
9d22eee
2a5f9fb
9833cdb
b5474e9
2a5f9fb
 
 
9d22eee
 
 
 
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5474e9
9d22eee
 
 
 
 
b5474e9
9d22eee
 
 
 
 
 
 
 
 
 
 
2a5f9fb
b5474e9
907da81
 
 
 
 
b5474e9
6ef2c5b
50fff65
 
6ef2c5b
 
 
b5474e9
6ef2c5b
b5474e9
6ef2c5b
 
 
b5474e9
0109b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5f9fb
 
7e71c4d
2a5f9fb
 
 
 
b1a1395
1d20e7c
 
 
 
 
 
 
 
a9a84ae
1d20e7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks, TaskType


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dummy: bool = False
    task_type: TaskType = TaskType.NotTask
    average: bool = False


## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# Scores
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append(
        [
            task.name,
            ColumnContent,
            ColumnContent(
                task.value.col_name,
                "number",
                displayed_by_default=(task.value.task_type == TaskType.AVG or task.value.average),
                task_type=task.value.task_type,
                average=task.value.average,
            ),
        ]
    )
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Revision", "str", False, False)])
auto_eval_column_dict.append(["num_few_shots", ColumnContent, ColumnContent("Few-shot", "str", False)])
auto_eval_column_dict.append(["add_special_tokens", ColumnContent, ColumnContent("Add Special Tokens", "bool", False)])
auto_eval_column_dict.append(
    ["llm_jp_eval_version", ColumnContent, ColumnContent("llm-jp-eval version", "str", False)]
)
auto_eval_column_dict.append(["backend", ColumnContent, ColumnContent("Backend Library", "str", False, dummy=True)])
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    model_type = ColumnContent("model_type", "str", True)
    precision = ColumnContent("precision", "str", True)
    add_special_tokens = ColumnContent("add_special_tokens", "str", True)
    status = ColumnContent("status", "str", True)


## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟢")
    FT = ModelDetails(name="fine-tuned", symbol="🔶")
    IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "🔶" in type:
            return ModelType.FT
        if "pretrained" in type or "🟢" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "⭕" in type:
            return ModelType.IFT
        return ModelType.Unknown


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")


class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown


class AddSpecialTokens(Enum):
    true = ModelDetails("True")
    false = ModelDetails("False")
    Unknown = ModelDetails("?")


class NumFewShots(Enum):
    shots_0 = ModelDetails("0")
    shots_4 = ModelDetails("4")
    Unknown = ModelDetails("?")

    def from_str(shots):
        if shots == "0":
            return NumFewShots.shots_0
        if shots == "4":
            return NumFewShots.shots_4
        return NumFewShots.Unknown


class Version(Enum):
    v1_4_1 = ModelDetails("v1.4.1")
    Unknown = ModelDetails("?")

    def from_str(version):
        if version == "1.4.1":
            return Version.v1_4_1
        else:
            return Version.Unknown


class Backend(Enum):
    vllm = ModelDetails("vllm")
    Unknown = ModelDetails("?")

    def from_str(backend):
        if backend == "vllm":
            return Backend.vllm
        else:
            return Backend.Unknown


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn)]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]

NUMERIC_INTERVALS = {
    "0~3B": pd.Interval(0, 3, closed="right"),
    "3~7B": pd.Interval(3, 7.3, closed="right"),
    "7~13B": pd.Interval(7.3, 13, closed="right"),
    "13~35B": pd.Interval(13, 35, closed="right"),
    "35~60B": pd.Interval(35, 60, closed="right"),
    "60B+": pd.Interval(60, 10000, closed="right"),
    "?": pd.Interval(-1, 0, closed="right"),
}