Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,558 Bytes
9d22eee 2a5f9fb df66f6e cf10aa9 efeee6d b5474e9 9d22eee 314f91a 2a5f9fb 6783fa0 cf10aa9 2a5f9fb b5474e9 efeee6d 9d22eee b5474e9 ba18c73 9d22eee cf10aa9 72b38a9 cf10aa9 9d22eee 8d1d021 9d22eee 567d2b9 6ef2c5b e046e31 0109b82 111e1ed 6783fa0 9d22eee 2a5f9fb b5474e9 efeee6d 2a5f9fb 567d2b9 2a5f9fb 567d2b9 2a5f9fb b5474e9 efeee6d 2a5f9fb 9d22eee 2a5f9fb 9833cdb b5474e9 2a5f9fb 9d22eee 2a5f9fb b5474e9 9d22eee b5474e9 9d22eee 2a5f9fb b5474e9 907da81 b5474e9 6ef2c5b 50fff65 6ef2c5b b5474e9 6ef2c5b b5474e9 6ef2c5b b5474e9 0109b82 2a5f9fb 7e71c4d 2a5f9fb b1a1395 1d20e7c a9a84ae 1d20e7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks, TaskType
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
task_type: TaskType = TaskType.NotTask
average: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# Scores
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
auto_eval_column_dict.append(
[
task.name,
ColumnContent,
ColumnContent(
task.value.col_name,
"number",
displayed_by_default=(task.value.task_type == TaskType.AVG or task.value.average),
task_type=task.value.task_type,
average=task.value.average,
),
]
)
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Revision", "str", False, False)])
auto_eval_column_dict.append(["num_few_shots", ColumnContent, ColumnContent("Few-shot", "str", False)])
auto_eval_column_dict.append(["add_special_tokens", ColumnContent, ColumnContent("Add Special Tokens", "bool", False)])
auto_eval_column_dict.append(
["llm_jp_eval_version", ColumnContent, ColumnContent("llm-jp-eval version", "str", False)]
)
auto_eval_column_dict.append(["backend", ColumnContent, ColumnContent("Backend Library", "str", False, dummy=True)])
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
model_type = ColumnContent("model_type", "str", True)
precision = ColumnContent("precision", "str", True)
add_special_tokens = ColumnContent("add_special_tokens", "str", True)
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "⭕" in type:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
return Precision.Unknown
class AddSpecialTokens(Enum):
true = ModelDetails("True")
false = ModelDetails("False")
Unknown = ModelDetails("?")
class NumFewShots(Enum):
shots_0 = ModelDetails("0")
shots_4 = ModelDetails("4")
Unknown = ModelDetails("?")
def from_str(shots):
if shots == "0":
return NumFewShots.shots_0
if shots == "4":
return NumFewShots.shots_4
return NumFewShots.Unknown
class Version(Enum):
v1_4_1 = ModelDetails("v1.4.1")
Unknown = ModelDetails("?")
def from_str(version):
if version == "1.4.1":
return Version.v1_4_1
else:
return Version.Unknown
class Backend(Enum):
vllm = ModelDetails("vllm")
Unknown = ModelDetails("?")
def from_str(backend):
if backend == "vllm":
return Backend.vllm
else:
return Backend.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"0~3B": pd.Interval(0, 3, closed="right"),
"3~7B": pd.Interval(3, 7.3, closed="right"),
"7~13B": pd.Interval(7.3, 13, closed="right"),
"13~35B": pd.Interval(13, 35, closed="right"),
"35~60B": pd.Interval(35, 60, closed="right"),
"60B+": pd.Interval(60, 10000, closed="right"),
"?": pd.Interval(-1, 0, closed="right"),
}
|