Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,071 Bytes
2a5f9fb df66f6e 2a5f9fb df66f6e 5c2a910 6e56e0d df66f6e 6e56e0d 55cc480 6e56e0d 456d9a1 b5474e9 6e56e0d 9833cdb 6e56e0d b5474e9 c1b8a96 6e56e0d b5474e9 7302987 6eb8bfd b5474e9 6eb8bfd b5474e9 7302987 b5474e9 7302987 3dfaf22 6e56e0d b5474e9 6e56e0d 5c2a910 b5474e9 3dfaf22 6e56e0d 2a5f9fb 9833cdb 2a5f9fb 9833cdb d7ffa15 2a5f9fb b5474e9 fc1e99b 9833cdb fc1e99b 2a5f9fb b5474e9 2a5f9fb c1b8a96 2a5f9fb b5474e9 d90e2b2 2a5f9fb 456d9a1 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import json
import os
from collections import defaultdict
import huggingface_hub
import requests
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer
from src.display.utils import Version
def check_model_card(repo_id: str) -> tuple[bool, str]:
"""Checks if the model card and license exist and have been filled"""
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
# Enforce license metadata
if card.data.license is None:
if not ("license_name" in card.data and "license_link" in card.data):
return False, (
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
)
# Enforce card content
if len(card.text) < 200:
return False, "Please add a description to your model card, it is too short."
return True, ""
def is_model_on_hub(
model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False
) -> tuple[bool, str]:
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
try:
config = AutoConfig.from_pretrained(
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
)
if test_tokenizer:
try:
AutoTokenizer.from_pretrained(
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
)
except ValueError as e:
return (False, f"uses a tokenizer which is not in a transformers release: {e}", None)
except Exception:
return (
False,
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
None,
)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None,
)
except OSError as e:
if "gated repo" in str(e):
slack_webhook_url = os.environ["SLACK_WEBHOOK_URL"]
text = f"<!channel>\n{model_name} is gated model! Please submit this model."
requests.post(slack_webhook_url, data=json.dumps({"text": text}))
return False, "is gated model! Please wait.", None
return False, "was not found on hub!", None
except Exception:
return False, "was not found on hub!", None
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def get_model_arch(model_info: ModelInfo):
"""Gets the model architecture from the configuration"""
return model_info.config.get("architectures", "Unknown")
def already_submitted_models(requested_models_dir: str) -> set[str]:
"""Gather a list of already submitted models to avoid duplicates"""
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
if info["status"] == "FAILED":
continue
# Version.v1_4_1.value.name を使用してバージョン情報を取得
version = info.get("llm_jp_eval_version", Version.v1_4_1.value.name)
file_names.append(f"{info['model']}_{info['precision']}_{info['add_special_tokens']}_{version}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
organisation, _ = info["model"].split("/")
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
|