Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,501 Bytes
df66f6e 2a5f9fb df66f6e 2a5f9fb cbcf875 2a5f9fb 9d22eee 2a5f9fb c1b8a96 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb 60bf24a eaeb3a6 60bf24a eaeb3a6 9d22eee 943f952 2a5f9fb 3dfaf22 2a5f9fb 12febe1 5413d9c 2a5f9fb 3dfaf22 2a5f9fb 943f952 92a9668 61a2e0b eaeb3a6 92a9668 12febe1 2a5f9fb 38ec743 2a5f9fb 4263de1 15daadb 4263de1 2a5f9fb c769424 2a5f9fb 8e4a7c9 2a5f9fb f52cc8a 091b970 2a5f9fb 89e838c 091b970 002172c 2a5f9fb 943f952 9d22eee 002172c 3dfaf22 bd685e1 5ceb136 5455e12 27fbd7a d5a90a4 2a5f9fb 002172c 2a5f9fb 42efd4f 2a5f9fb 42efd4f 4263de1 2a5f9fb 3dfaf22 86ec923 20f62f2 2a5f9fb 9d22eee 2a5f9fb b1a1395 2a5f9fb 86ec923 2a5f9fb 3dfaf22 8aa51bc 2a5f9fb 281e899 61a2e0b 6eb2778 9d22eee 3dfaf22 2a5f9fb edcde2c 2a5f9fb 61bbba6 a60d160 2a5f9fb 6d1c2ae 06441ec 29b13b8 ed97320 020b254 06441ec 2a5f9fb 29b13b8 8a9dbef e9f5e93 3dfaf22 dd67828 258b169 2a5f9fb 258b169 70a5d78 2a5f9fb 3dfaf22 5ac515c 762689d 2a5f9fb 3dfaf22 3bf84ad 2a5f9fb 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb 3bf84ad 4d29f4f 2a5f9fb b1a1395 df66f6e 2a5f9fb ef386ca 9d056e9 2a5f9fb 8f37c43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from decimal import Decimal
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
# precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
precision: str = "Unknown"
# model_type: str = "Unknown"
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
num_few_shots: str = "0"
add_special_tokens: str = ""
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
metainfo = config.get("metainfo", {})
model_config = config.get("model", {})
# Get model type from metainfo
# model_type_str = metainfo.get("model_type", "")
# model_type = ModelType.from_str(model_type_str)
# model_type = metainfo.get("model_type", "Unknown")
# Get num_few_shots from metainfo
num_few_shots = str(metainfo.get("num_few_shots", 0))
# Precision
# precision = Precision.from_str(config.get("dtype"))
precision = model_config.get("dtype", "Unknown")
# Add Special Tokens
add_special_tokens = str(config.get("pipeline_kwargs",{"add_special_tokens":"Unknown"}).get("add_special_tokens"))
# Get model and org
# org_and_model = config.get("model_name", config.get("offline_inference").get("model_name", None))
org_and_model = config.get("model_name", config.get("offline_inference", {}).get("model_name", "Unknown"))
org_and_model = org_and_model.split("/", 1)
# org_and_modelがリストの場合、"/"で結合
if isinstance(org_and_model, list):
full_model = "/".join(org_and_model)
else:
full_model = org_and_model
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
# result_key = f"{model}_{precision.value.name}"
result_key = f"{model}_{precision}_({num_few_shots}shots)_{add_special_tokens}"
else:
org = org_and_model[0]
model = org_and_model[1]
# result_key = f"{org}_{model}_{precision.value.name}"
result_key = f"{model}_{precision}_({num_few_shots}shots)_{add_special_tokens}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
if "scores" not in data:
raise KeyError(f"'scores' key not found in JSON file: {json_filepath}")
scores = data["scores"]
results = {}
for task in Tasks:
task_value = task.value
score = scores.get(task_value.metric)
results[task_value.metric] = score
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
num_few_shots=num_few_shots,
add_special_tokens=add_special_tokens,
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision)
if request_file:
with open(request_file, "r") as f:
request_data = json.load(f)
else:
print("No request file found.")
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
# AutoEvalColumn.average.name: None,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.num_few_shots.name: self.num_few_shots,
AutoEvalColumn.add_special_tokens.name: self.add_special_tokens,
}
# for task in Tasks:
# task_value = task.value
# data_dict[task_value.col_name] = self.results.get(task_value.benchmark, None)
for task in Tasks:
task_value = task.value
value = self.results.get(task_value.metric)
data_dict[task_value.col_name] = Decimal(value)
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
data_dict = eval_result.to_dict()
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
# print(f"Processing file: {model_result_filepath}")
# print(f"Eval result: {eval_result.to_dict()}")
return results |