File size: 22,732 Bytes
dcf52c9
464bbf9
9346f1c
 
4596a70
2a5f9fb
 
1ffc326
8c49cb6
 
 
 
 
 
 
976f398
df66f6e
 
 
 
 
 
 
 
9d22eee
c41e66c
6c72369
9c999fc
6c72369
272a431
df66f6e
24622c4
df66f6e
 
8c49cb6
10f9b3c
50df158
d084b26
8b28d2b
d084b26
 
 
4879b93
d084b26
 
 
 
 
 
4879b93
d084b26
 
 
2be444d
8b28d2b
2708d8e
6262f5a
ffefe11
 
 
 
28dbc1f
adb0416
614ee1f
016c2e7
 
 
a1f813a
016c2e7
ee338f6
016c2e7
2a731a3
9c999fc
016c2e7
 
 
 
 
4a39b37
 
 
ee338f6
4a39b37
 
ce780cb
4a39b37
 
 
 
 
 
459b2a1
4a39b37
 
 
e36d99d
 
96fd777
016c2e7
 
 
 
 
 
 
 
 
047f6fc
 
 
 
 
 
 
 
 
 
 
016c2e7
 
da97add
 
016c2e7
da97add
047f6fc
da97add
 
 
 
 
 
 
 
 
b7de7ed
 
da97add
8604d8b
016c2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c5b4cb
d2179b0
016c2e7
 
 
 
ee338f6
016c2e7
3437d98
ee338f6
 
 
c163b21
c445cd9
 
ee338f6
3437d98
 
c445cd9
 
1926e3c
3437d98
c445cd9
 
 
 
ee338f6
c445cd9
c163b21
 
c445cd9
 
3437d98
 
c445cd9
 
3437d98
1ea4467
c445cd9
 
c163b21
 
3437d98
c163b21
 
016c2e7
 
459b2a1
7644705
01233b7
 
58733e4
6e8f400
10f9b3c
8cb7546
613696b
016c2e7
 
 
 
 
 
 
 
 
 
459b2a1
 
 
 
 
 
 
 
 
 
 
 
 
 
016c2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f1763
 
 
 
 
 
 
9c999fc
 
 
 
 
 
 
016c2e7
bbdb195
8604d8b
 
638d653
2c38c9a
 
 
 
 
 
 
 
1a74c9d
8604d8b
 
da97add
6f43d67
04dee2e
96495f6
 
 
04dee2e
 
 
 
 
1bbae1b
6f43d67
 
1bbae1b
b7de7ed
96495f6
1bbae1b
 
04dee2e
 
6f43d67
b7de7ed
016c2e7
b7de7ed
 
 
016c2e7
 
 
96495f6
016c2e7
04dee2e
 
 
 
6f43d67
c7c473e
016c2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f1763
9c999fc
016c2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f1763
9c999fc
016c2e7
 
 
 
 
 
 
 
 
 
9c999fc
016c2e7
 
 
 
 
 
 
 
a4f1763
9c999fc
016c2e7
 
 
 
 
 
 
 
f2bc0a5
613696b
6e8f400
0227006
613696b
8dfa543
0227006
8dfa543
6e8f400
8dfa543
8c49cb6
 
 
 
8dfa543
 
 
 
 
fc1e99b
8dfa543
8c49cb6
 
 
 
8dfa543
 
 
 
 
fc1e99b
8dfa543
 
8c49cb6
 
 
 
8dfa543
 
 
 
 
fc1e99b
8dfa543
28dbc1f
 
 
 
 
 
 
 
 
 
 
00358b1
 
0227006
6e8f400
 
 
a163e5c
b323764
9d22eee
8c49cb6
b323764
ef627e9
b323764
 
0227006
6e8f400
12cea14
9d22eee
8c49cb6
12cea14
24622c4
217b585
 
12cea14
9d22eee
8c49cb6
12cea14
 
 
6e8f400
8c49cb6
c41e66c
a70b334
c41e66c
 
 
 
 
8cb7546
6e8f400
 
 
 
 
 
 
 
12cea14
 
8c49cb6
c41e66c
6e8f400
 
8cb7546
 
d16cee2
 
 
 
 
67109fc
d16cee2
adb0416
 
d16cee2
10f9b3c
a2790cb
10f9b3c
daf60ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import os
import json
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
    AddSpecialTokens,
    NumFewShots,
    NUMERIC_INTERVALS,
    TYPES,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()

LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
original_df = LEADERBOARD_DF
leaderboard_df = original_df.copy()
(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
    failed_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    type_query: list,
    precision_query: str,
    size_query: list,
    add_special_tokens_query: list,
    num_few_shots_query: list,
    show_deleted: bool,
    show_merges: bool,
    show_flagged: bool,
    query: str,
):
    print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
    print(f"hidden_df shape before filtering: {hidden_df.shape}")
    
    filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
    print(f"filtered_df shape after filter_models: {filtered_df.shape}")
    
    filtered_df = filter_queries(query, filtered_df)
    print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
    
    print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
    print("Filtered dataframe head:")
    print(filtered_df.head())

    df = select_columns(filtered_df, columns)
    print(f"Final df shape: {df.shape}")
    print("Final dataframe head:")
    print(df.head())
    return df


def load_query(request: gr.Request):  # triggered only once at startup => read query parameter if it exists
    query = request.query_params.get("query") or ""
    return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]


# def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
#     always_here_cols = [
#         AutoEvalColumn.model_type_symbol.name,
#         AutoEvalColumn.model.name,
#     ]
#     # We use COLS to maintain sorting
#     filtered_df = df[
#         always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
#     ]
#     return filtered_df

def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,  # 'T'
        AutoEvalColumn.model.name,              # 'Model'
    ]
    # 'always_here_cols' を 'columns' から除外して重複を避ける
    columns = [c for c in columns if c not in always_here_cols]
    # 'always_here_cols' を先頭に追加し、その他のカラムを COLS の順序で追加
    new_columns = always_here_cols + [c for c in COLS if c in df.columns and c in columns]
    # 重複を排除しつつ順序を維持
    seen = set()
    unique_columns = []
    for c in new_columns:
        if c not in seen:
            unique_columns.append(c)
            seen.add(c)
    if AutoEvalColumn.model.name not in unique_columns:
        unique_columns.insert(1, AutoEvalColumn.model.name)  # Type_の次にModelを挿入
    filtered_df = df[unique_columns]
    return filtered_df

def filter_queries(query: str, filtered_df: pd.DataFrame):
    """Added by Abishek"""
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
) -> pd.DataFrame:
    print(f"Initial df shape: {df.shape}")
    print(f"Initial df content:\n{df}")

    filtered_df = df

    # Model Type フィルタリング
    type_emoji = [t.split()[0] for t in type_query]
    filtered_df = filtered_df[filtered_df['T'].isin(type_emoji)]
    print(f"After type filter: {filtered_df.shape}")

    # Precision フィルタリング
    filtered_df = filtered_df[filtered_df['Precision'].isin(precision_query + ['Unknown', '?'])]
    print(f"After precision filter: {filtered_df.shape}")

    # Model Size フィルタリング
    if 'Unknown' in size_query:
        size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
    else:
        size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown'))
    filtered_df = filtered_df[size_mask]
    print(f"After size filter: {filtered_df.shape}")

    # Add Special Tokens フィルタリング
    filtered_df = filtered_df[filtered_df['Add Special Tokens'].isin(add_special_tokens_query + ['Unknown', '?'])]
    print(f"After add_special_tokens filter: {filtered_df.shape}")

    # Num Few Shots フィルタリング
    filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
    print(f"After num_few_shots filter: {filtered_df.shape}")

    # Show deleted models フィルタリング
    if not show_deleted:
        filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
    print(f"After show_deleted filter: {filtered_df.shape}")

    print("Filtered dataframe head:")
    print(filtered_df.head())
    return filtered_df

leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if not c.hidden and not c.never_hidden# and not c.dummy
                            ],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    with gr.Row():
                        deleted_models_visibility = gr.Checkbox(
                            value=False, label="Show private/deleted models", interactive=True
                        )
                        merged_models_visibility = gr.Checkbox(
                            value=False, label="Show merges", interactive=True
                        )
                        flagged_models_visibility = gr.Checkbox(
                            value=False, label="Show flagged models", interactive=True
                        )
                with gr.Column(min_width=320):
                    #with gr.Box(elem_id="box-filter"):
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_precision = gr.CheckboxGroup(
                        label="Precision",
                        choices=[i.value.name for i in Precision],
                        value=[i.value.name for i in Precision],
                        interactive=True,
                        elem_id="filter-columns-precision",
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                    )
                    filter_columns_add_special_tokens = gr.CheckboxGroup(
                        label="Add Special Tokens",
                        choices=[i.value.name for i in AddSpecialTokens],
                        value=[i.value.name for i in AddSpecialTokens],
                        interactive=True,
                        elem_id="filter-columns-add-special-tokens",
                    )
                    filter_columns_num_few_shots = gr.CheckboxGroup(
                        label="Num Few Shots",
                        choices=[i.value.name for i in NumFewShots],
                        value=[i.value.name for i in NumFewShots],
                        interactive=True,
                        elem_id="filter-columns-num-few-shots",
                    )

            leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
            # initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
            # leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)

            # leaderboard_table = gr.components.Dataframe(
            #     value=leaderboard_df_filtered,
            #     headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
            #     datatype=TYPES,
            #     elem_id="leaderboard-table",
            #     interactive=False,
            #     visible=True,
            # )

            initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
            leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
            
            leaderboard_df_filtered = leaderboard_df_filtered.rename(columns={'T': 'Type_'})
            
            # カラム名を単純化
            leaderboard_df_filtered.columns = [c.replace(' ', '_').replace('-', '_') for c in leaderboard_df_filtered.columns]
            
            # データフレームの内容を確認
            print("Columns in leaderboard_df_filtered:")
            print(leaderboard_df_filtered.columns)
            print("\nFirst few rows of leaderboard_df_filtered:")
            print(leaderboard_df_filtered.head())
            
            # 'Type_' カラムを文字列型に変換
            leaderboard_df_filtered['Type_'] = leaderboard_df_filtered['Type_'].astype(str)
            
            # datatypeを準備
            datatype_dict = {col: "str" for col in leaderboard_df_filtered.columns}
            
            # デバッグ用出力
            print("\nDatatype dictionary:")
            print(datatype_dict)
            
            # Gradio Dataframe コンポーネントの初期化
            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df_filtered.to_dict('records'),
                headers=list(leaderboard_df_filtered.columns),
                datatype=datatype_dict,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                wrap=True,
            )
            
            # デバッグ情報の出力
            print("\nLeaderboard table headers:")
            print(leaderboard_table.headers)

            
            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    filter_columns_type,
                    filter_columns_precision,
                    filter_columns_size,
                    filter_columns_add_special_tokens,
                    filter_columns_num_few_shots,
                    deleted_models_visibility,
                    merged_models_visibility,
                    flagged_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )

            # Define a hidden component that will trigger a reload only if a query parameter has be set
            hidden_search_bar = gr.Textbox(value="", visible=False)
            hidden_search_bar.change(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    filter_columns_type,
                    filter_columns_precision,
                    filter_columns_size,
                    filter_columns_add_special_tokens,
                    filter_columns_num_few_shots,
                    deleted_models_visibility,
                    merged_models_visibility,
                    flagged_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )
            # Check query parameter once at startup and update search bar + hidden component
            demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
            
            for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_add_special_tokens, filter_columns_num_few_shots, deleted_models_visibility, merged_models_visibility, flagged_models_visibility]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        filter_columns_type,
                        filter_columns_precision,
                        filter_columns_size,
                        filter_columns_add_special_tokens,
                        filter_columns_num_few_shots,
                        deleted_models_visibility,
                        merged_models_visibility,
                        flagged_models_visibility,
                        search_bar,
                    ],
                    leaderboard_table,
                    queue=True,
                )

        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"❎ Failed Evaluation Queue ({len(failed_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            failed_eval_table = gr.components.Dataframe(
                                value=failed_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
                    add_special_tokens = gr.Dropdown(
                        choices=[i.value.name for i in AddSpecialTokens if i != AddSpecialTokens.Unknown],
                        label="AddSpecialTokens",
                        multiselect=False,
                        value="False",
                        interactive=True,
                    )

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                    add_special_tokens,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()