Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
BOTTOM_LOGO, | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_LABEL_JA, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
EVALUATION_QUEUE_TEXT_JA, | |
INTRODUCTION_TEXT, | |
INTRODUCTION_TEXT_JA, | |
LLM_BENCHMARKS_TEXT, | |
LLM_BENCHMARKS_TEXT_JA, | |
TITLE, | |
TaskType, | |
) | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AddSpecialTokens, | |
AutoEvalColumn, | |
ModelType, | |
NumFewShots, | |
Precision, | |
Version, | |
VllmVersion, | |
fields, | |
) | |
from src.envs import API, CONTENTS_REPO, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID | |
from src.i18n import ( | |
CITATION_ACCORDION_LABEL, | |
CITATION_ACCORDION_LABEL_JA, | |
SELECT_ALL_BUTTON_LABEL, | |
SELECT_ALL_BUTTON_LABEL_JA, | |
SELECT_AVG_ONLY_BUTTON_LABEL, | |
SELECT_AVG_ONLY_BUTTON_LABEL_JA, | |
SELECT_NONE_BUTTON_LABEL, | |
SELECT_NONE_BUTTON_LABEL_JA, | |
) | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space() -> None: | |
API.restart_space(repo_id=REPO_ID) | |
# Space initialization | |
try: | |
snapshot_download( | |
repo_id=QUEUE_REPO, | |
local_dir=EVAL_REQUESTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
) | |
except Exception: | |
restart_space() | |
# Get dataframes | |
( | |
FINISHED_EVAL_QUEUE_DF, | |
RUNNING_EVAL_QUEUE_DF, | |
PENDING_EVAL_QUEUE_DF, | |
FAILED_EVAL_QUEUE_DF, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
ORIGINAL_DF = get_leaderboard_df(CONTENTS_REPO, COLS, BENCHMARK_COLS) | |
MAX_MODEL_SIZE = ORIGINAL_DF["#Params (B)"].max() | |
# Searching and filtering | |
def filter_models( | |
df: pd.DataFrame, | |
type_query: list[str], | |
size_query: list[str], | |
precision_query: list[str], | |
add_special_tokens_query: list[str], | |
num_few_shots_query: list[str], | |
version_query: list[str], | |
vllm_query: list[str], | |
) -> pd.DataFrame: | |
# Filter by model type | |
type_emoji = [t.split()[0] for t in type_query] | |
df = df[df["T"].isin(type_emoji)] | |
# Filter by precision | |
df = df[df["Precision"].isin(precision_query)] | |
# Filter by model size | |
# Note: When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0), | |
# so we need to check the length of `df` before applying the filter. | |
if len(df) > 0: | |
size_mask = df["#Params (B)"].apply( | |
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown") | |
) | |
if "Unknown" in size_query: | |
size_mask |= df["#Params (B)"].isna() | (df["#Params (B)"] == 0) | |
df = df[size_mask] | |
# Filter by special tokens setting | |
df = df[df["Add Special Tokens"].isin(add_special_tokens_query)] | |
# Filter by number of few-shot examples | |
df = df[df["Few-shot"].astype(str).isin(num_few_shots_query)] | |
# Filter by evaluator version | |
df = df[df["llm-jp-eval version"].isin(version_query)] | |
# Filter by vLLM version | |
df = df[df["vllm version"].isin(vllm_query)] | |
return df | |
def search_model_by_name(df: pd.DataFrame, model_name: str) -> pd.DataFrame: | |
return df[df[AutoEvalColumn.dummy.name].str.contains(model_name, case=False)] | |
def search_models_by_multiple_names(df: pd.DataFrame, search_text: str) -> pd.DataFrame: | |
if not search_text: | |
return df | |
model_names = [name.strip() for name in search_text.split(";")] | |
dfs = [search_model_by_name(df, name) for name in model_names if name] | |
return pd.concat(dfs).drop_duplicates(subset=AutoEvalColumn.row_id.name) | |
def select_columns(df: pd.DataFrame, columns: list[str]) -> pd.DataFrame: | |
always_here_cols = [ | |
AutoEvalColumn.model_type_symbol.name, # 'T' | |
AutoEvalColumn.model.name, # 'Model' | |
] | |
# Remove 'always_here_cols' from 'columns' to avoid duplicates | |
columns = [c for c in columns if c not in always_here_cols] | |
new_columns = ( | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.row_id.name] | |
) | |
# Maintain order while removing duplicates | |
seen = set() | |
unique_columns = [] | |
for c in new_columns: | |
if c not in seen: | |
unique_columns.append(c) | |
seen.add(c) | |
# Create DataFrame with filtered columns | |
filtered_df = df[unique_columns] | |
return filtered_df | |
def update_table( | |
type_query: list[str], | |
precision_query: list[str], | |
size_query: list[str], | |
add_special_tokens_query: list[str], | |
num_few_shots_query: list[str], | |
version_query: list[str], | |
vllm_query: list[str], | |
query: str, | |
*columns, | |
) -> pd.DataFrame: | |
columns = [item for column in columns for item in column] | |
df = filter_models( | |
ORIGINAL_DF, | |
type_query, | |
size_query, | |
precision_query, | |
add_special_tokens_query, | |
num_few_shots_query, | |
version_query, | |
vllm_query, | |
) | |
df = search_models_by_multiple_names(df, query) | |
df = select_columns(df, columns) | |
return df | |
# Prepare the dataframes | |
leaderboard_df = ORIGINAL_DF.copy() | |
leaderboard_df = filter_models( | |
leaderboard_df, | |
[t.to_str(" : ") for t in ModelType], | |
list(NUMERIC_INTERVALS.keys()), | |
[i.value.name for i in Precision], | |
[i.value.name for i in AddSpecialTokens], | |
[i.value.name for i in NumFewShots], | |
[i.value.name for i in Version], | |
[i.value.name for i in VllmVersion], | |
) | |
# Initialize columns | |
INITIAL_COLUMNS = ["T"] + [ | |
c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T" | |
] | |
leaderboard_df = select_columns(leaderboard_df, INITIAL_COLUMNS) | |
# Leaderboard demo | |
def toggle_all_categories(action: str) -> list[gr.CheckboxGroup]: | |
"""Function to control all category checkboxes at once""" | |
results = [] | |
for task_type in TaskType: | |
if task_type == TaskType.NotTask: | |
# Maintain existing selection for Model details | |
results.append(gr.CheckboxGroup()) | |
else: | |
if action == "all": | |
# Select all | |
results.append( | |
gr.CheckboxGroup( | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden and not c.dummy and c.task_type == task_type | |
] | |
) | |
) | |
elif action == "none": | |
# Deselect all | |
results.append(gr.CheckboxGroup(value=[])) | |
elif action == "avg_only": | |
# Select only AVG metrics | |
results.append( | |
gr.CheckboxGroup( | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden | |
and not c.never_hidden | |
and c.task_type == task_type | |
and ((task_type == TaskType.AVG) or (task_type != TaskType.AVG and c.average)) | |
] | |
) | |
) | |
return results | |
TASK_AVG_NAME_MAP = { | |
c.name: c.task_type.name for c in fields(AutoEvalColumn) if c.average and c.task_type != TaskType.AVG | |
} | |
AVG_COLUMNS = ["AVG"] + list(TASK_AVG_NAME_MAP.keys()) | |
def plot_size_vs_score(df_filtered: pd.DataFrame) -> go.Figure: | |
df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])] | |
df = df[df["#Params (B)"] > 0] | |
df = df[["model_name_for_query", "#Params (B)", "Few-shot"] + AVG_COLUMNS] | |
df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"}) | |
df["model_name_without_org_name"] = df["Model"].str.split("/").str[-1] + " (" + df["n-shot"].astype(str) + "-shot)" | |
df = pd.melt( | |
df, | |
id_vars=["Model", "model_name_without_org_name", "#Params (B)", "n-shot"], | |
value_vars=AVG_COLUMNS, | |
var_name="Category", | |
value_name="Score", | |
) | |
fig = px.scatter( | |
df, | |
x="#Params (B)", | |
y="Score", | |
text="model_name_without_org_name", | |
color="Category", | |
hover_data=["Model", "n-shot", "Category"], | |
) | |
fig.update_traces( | |
hovertemplate="<b>%{customdata[0]}</b><br>#Params: %{x:.2f}B<br>n-shot: %{customdata[1]}<br>%{customdata[2]}: %{y:.4f}<extra></extra>", | |
textposition="top right", | |
) | |
for trace in fig.data: | |
if trace.name != "AVG": | |
trace.visible = "legendonly" | |
fig.update_layout(xaxis_range=[0, MAX_MODEL_SIZE * 1.2], yaxis_range=[0, 1]) | |
fig.update_layout( | |
updatemenus=[ | |
dict( | |
type="buttons", | |
direction="left", | |
showactive=True, | |
buttons=[ | |
dict(label="Show Labels", method="update", args=[{"mode": ["markers+text"]}]), | |
dict(label="Hide Labels", method="update", args=[{"mode": ["markers"]}]), | |
], | |
x=0.5, | |
y=-0.2, | |
xanchor="center", | |
yanchor="top", | |
) | |
] | |
) | |
return fig | |
def plot_average_scores(df_filtered: pd.DataFrame) -> go.Figure: | |
df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])] | |
df = df[["model_name_for_query", "Few-shot"] + list(TASK_AVG_NAME_MAP.keys())] | |
df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"}) | |
df = df.rename(columns=TASK_AVG_NAME_MAP) | |
df = df.set_index(["Model", "n-shot"]) | |
fig = go.Figure() | |
for i, ((name, n_shot), row) in enumerate(df.iterrows()): | |
visible = True if i < 2 else "legendonly" # Display only the first 2 models | |
fig.add_trace( | |
go.Scatterpolar( | |
r=row.values, | |
theta=row.index, | |
fill="toself", | |
name=f"{name} ({n_shot}-shot)", | |
hovertemplate="%{theta}: %{r}", | |
visible=visible, | |
) | |
) | |
fig.update_layout( | |
polar={ | |
"radialaxis": {"range": [0, 1]}, | |
}, | |
showlegend=True, | |
) | |
return fig | |
shown_columns_dict: dict[str, gr.CheckboxGroup] = {} | |
checkboxes: list[gr.CheckboxGroup] = [] | |
with gr.Blocks() as demo_leaderboard: | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Accordion("Column Filter", open=True): | |
with gr.Row(): | |
with gr.Row(): | |
select_all_button = gr.Button(SELECT_ALL_BUTTON_LABEL_JA, size="sm") | |
select_none_button = gr.Button(SELECT_NONE_BUTTON_LABEL_JA, size="sm") | |
select_avg_only_button = gr.Button(SELECT_AVG_ONLY_BUTTON_LABEL_JA, size="sm") | |
for task_type in TaskType: | |
if task_type == TaskType.NotTask: | |
label = "Model details" | |
else: | |
label = task_type.value | |
with gr.Accordion(label, open=True, elem_classes="accordion"): | |
with gr.Row(height=110): | |
shown_column = gr.CheckboxGroup( | |
show_label=False, | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden and not c.dummy and c.task_type == task_type | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default | |
and not c.hidden | |
and not c.never_hidden | |
and c.task_type == task_type | |
], | |
elem_id="column-select", | |
container=False, | |
) | |
shown_columns_dict[task_type.name] = shown_column | |
checkboxes.append(shown_column) | |
with gr.Accordion("Model Filter", open=True): | |
with gr.Row(): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=[t.to_str() for t in ModelType], | |
value=[t.to_str() for t in ModelType], | |
elem_id="filter-columns-type", | |
) | |
filter_columns_precision = gr.CheckboxGroup( | |
label="Precision", | |
choices=[i.value.name for i in Precision], | |
value=[i.value.name for i in Precision], | |
elem_id="filter-columns-precision", | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
elem_id="filter-columns-size", | |
) | |
filter_columns_add_special_tokens = gr.CheckboxGroup( | |
label="Add Special Tokens", | |
choices=[i.value.name for i in AddSpecialTokens], | |
value=[i.value.name for i in AddSpecialTokens], | |
elem_id="filter-columns-add-special-tokens", | |
) | |
filter_columns_num_few_shots = gr.CheckboxGroup( | |
label="Num Few Shots", | |
choices=[i.value.name for i in NumFewShots], | |
value=[i.value.name for i in NumFewShots], | |
elem_id="filter-columns-num-few-shots", | |
) | |
filter_columns_version = gr.CheckboxGroup( | |
label="llm-jp-eval version", | |
choices=[i.value.name for i in Version], | |
value=[i.value.name for i in Version], | |
elem_id="filter-columns-version", | |
) | |
filter_columns_vllm = gr.CheckboxGroup( | |
label="vllm version", | |
choices=[i.value.name for i in VllmVersion], | |
value=[i.value.name for i in VllmVersion], | |
elem_id="filter-columns-vllm", | |
) | |
leaderboard_table = gr.Dataframe( | |
value=leaderboard_df, | |
headers=INITIAL_COLUMNS, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
graph_size_vs_score = gr.Plot(label="Size vs. Score") | |
graph_average_scores = gr.Plot(label="Performance across Task Categories") | |
select_all_button.click( | |
fn=lambda: toggle_all_categories("all"), | |
outputs=checkboxes, | |
api_name=False, | |
queue=False, | |
) | |
select_none_button.click( | |
fn=lambda: toggle_all_categories("none"), | |
outputs=checkboxes, | |
api_name=False, | |
queue=False, | |
) | |
select_avg_only_button.click( | |
fn=lambda: toggle_all_categories("avg_only"), | |
outputs=checkboxes, | |
api_name=False, | |
queue=False, | |
) | |
gr.on( | |
triggers=[ | |
filter_columns_type.change, | |
filter_columns_precision.change, | |
filter_columns_size.change, | |
filter_columns_add_special_tokens.change, | |
filter_columns_num_few_shots.change, | |
filter_columns_version.change, | |
filter_columns_vllm.change, | |
search_bar.submit, | |
] | |
+ [shown_columns.change for shown_columns in shown_columns_dict.values()], | |
fn=update_table, | |
inputs=[ | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
filter_columns_add_special_tokens, | |
filter_columns_num_few_shots, | |
filter_columns_version, | |
filter_columns_vllm, | |
search_bar, | |
] | |
+ [shown_columns for shown_columns in shown_columns_dict.values()], | |
outputs=leaderboard_table, | |
) | |
leaderboard_table.change( | |
fn=plot_size_vs_score, | |
inputs=leaderboard_table, | |
outputs=graph_size_vs_score, | |
api_name=False, | |
queue=False, | |
) | |
leaderboard_table.change( | |
fn=plot_average_scores, | |
inputs=leaderboard_table, | |
outputs=graph_average_scores, | |
api_name=False, | |
queue=False, | |
) | |
# Submission demo | |
with gr.Blocks() as demo_submission: | |
with gr.Column(): | |
with gr.Row(): | |
evaluation_queue_text = gr.Markdown(EVALUATION_QUEUE_TEXT_JA, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Finished Evaluations ({len(FINISHED_EVAL_QUEUE_DF)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.Dataframe( | |
value=FINISHED_EVAL_QUEUE_DF, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"π Running Evaluation Queue ({len(RUNNING_EVAL_QUEUE_DF)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.Dataframe( | |
value=RUNNING_EVAL_QUEUE_DF, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Evaluation Queue ({len(PENDING_EVAL_QUEUE_DF)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.Dataframe( | |
value=PENDING_EVAL_QUEUE_DF, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β Failed Evaluation Queue ({len(FAILED_EVAL_QUEUE_DF)})", | |
open=False, | |
): | |
with gr.Row(): | |
failed_eval_table = gr.Dataframe( | |
value=FAILED_EVAL_QUEUE_DF, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
model_type = gr.Dropdown( | |
label="Model type", | |
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
multiselect=False, | |
value=None, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
label="Precision", | |
choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
multiselect=False, | |
value="float16", | |
) | |
add_special_tokens = gr.Dropdown( | |
label="AddSpecialTokens", | |
choices=[i.value.name for i in AddSpecialTokens if i != AddSpecialTokens.Unknown], | |
multiselect=False, | |
value="False", | |
) | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
fn=add_new_eval, | |
inputs=[ | |
model_name_textbox, | |
revision_name_textbox, | |
precision, | |
model_type, | |
add_special_tokens, | |
], | |
outputs=submission_result, | |
) | |
# Main demo | |
def set_default_language(request: gr.Request) -> gr.Radio: | |
if request.headers["Accept-Language"].split(",")[0].lower().startswith("ja"): | |
return gr.Radio(value="π―π΅ JA") | |
else: | |
return gr.Radio(value="πΊπΈ EN") | |
def update_language( | |
language: str, | |
) -> tuple[ | |
gr.Markdown, # introduction_text | |
gr.Markdown, # llm_benchmarks_text | |
gr.Markdown, # evaluation_queue_text | |
gr.Textbox, # citation_button | |
gr.Button, # select_all_button | |
gr.Button, # select_none_button | |
gr.Button, # select_avg_only_button | |
gr.Accordion, # citation_accordion | |
]: | |
if language == "π―π΅ JA": | |
return ( | |
gr.Markdown(value=INTRODUCTION_TEXT_JA), | |
gr.Markdown(value=LLM_BENCHMARKS_TEXT_JA), | |
gr.Markdown(value=EVALUATION_QUEUE_TEXT_JA), | |
gr.Textbox(label=CITATION_BUTTON_LABEL_JA), | |
gr.Button(value=SELECT_ALL_BUTTON_LABEL_JA), | |
gr.Button(value=SELECT_NONE_BUTTON_LABEL_JA), | |
gr.Button(value=SELECT_AVG_ONLY_BUTTON_LABEL_JA), | |
gr.Accordion(label=CITATION_ACCORDION_LABEL_JA), | |
) | |
else: | |
return ( | |
gr.Markdown(value=INTRODUCTION_TEXT), | |
gr.Markdown(value=LLM_BENCHMARKS_TEXT), | |
gr.Markdown(value=EVALUATION_QUEUE_TEXT), | |
gr.Textbox(label=CITATION_BUTTON_LABEL), | |
gr.Button(value=SELECT_ALL_BUTTON_LABEL), | |
gr.Button(value=SELECT_NONE_BUTTON_LABEL), | |
gr.Button(value=SELECT_AVG_ONLY_BUTTON_LABEL), | |
gr.Accordion(label=CITATION_ACCORDION_LABEL), | |
) | |
with gr.Blocks(css_paths="style.css", theme=gr.themes.Glass()) as demo: | |
gr.HTML(TITLE) | |
introduction_text = gr.Markdown(INTRODUCTION_TEXT_JA, elem_classes="markdown-text") | |
with gr.Tabs() as tabs: | |
with gr.Tab("π LLM Benchmark", elem_id="llm-benchmark-tab-table"): | |
demo_leaderboard.render() | |
with gr.Tab("π About", elem_id="llm-benchmark-tab-about"): | |
llm_benchmarks_text = gr.Markdown(LLM_BENCHMARKS_TEXT_JA, elem_classes="markdown-text") | |
with gr.Tab("π Submit here! ", elem_id="llm-benchmark-tab-submit"): | |
demo_submission.render() | |
with gr.Row(): | |
with gr.Accordion(CITATION_ACCORDION_LABEL_JA, open=False) as citation_accordion: | |
citation_button = gr.Textbox( | |
label=CITATION_BUTTON_LABEL_JA, | |
value=CITATION_BUTTON_TEXT, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
gr.HTML(BOTTOM_LOGO) | |
language = gr.Radio( | |
choices=["π―π΅ JA", "πΊπΈ EN"], | |
value="π―π΅ JA", | |
elem_classes="language-selector", | |
show_label=False, | |
container=False, | |
) | |
demo.load(fn=set_default_language, outputs=language) | |
language.change( | |
fn=update_language, | |
inputs=language, | |
outputs=[ | |
introduction_text, | |
llm_benchmarks_text, | |
evaluation_queue_text, | |
citation_button, | |
select_all_button, | |
select_none_button, | |
select_avg_only_button, | |
citation_accordion, | |
], | |
api_name=False, | |
) | |
if __name__ == "__main__": | |
if os.getenv("SPACE_ID"): | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |