Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
BOTTOM_LOGO, | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
EVALUATION_QUEUE_TEXT_JP, | |
INTRODUCTION_TEXT, | |
INTRODUCTION_TEXT_JP, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AddSpecialTokens, | |
AutoEvalColumn, | |
ModelType, | |
NumFewShots, | |
Precision, | |
WeightType, | |
fields, | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
# Space initialization | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, | |
local_dir=EVAL_REQUESTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, | |
local_dir=EVAL_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
) | |
except Exception: | |
restart_space() | |
# Searching and filtering | |
def filter_models( | |
df: pd.DataFrame, | |
type_query: list, | |
size_query: list, | |
precision_query: list, | |
add_special_tokens_query: list, | |
num_few_shots_query: list, | |
show_deleted: bool, | |
show_merges: bool, | |
show_flagged: bool, | |
) -> pd.DataFrame: | |
print(f"Initial df shape: {df.shape}") | |
print(f"Initial df content:\n{df}") | |
filtered_df = df | |
# Model Type フィルタリング | |
type_column = "T" if "T" in df.columns else "Type_" | |
type_emoji = [t.split()[0] for t in type_query] | |
filtered_df = df[df[type_column].isin(type_emoji)] | |
print(f"After type filter: {filtered_df.shape}") | |
# Precision フィルタリング | |
filtered_df = filtered_df[filtered_df["Precision"].isin(precision_query + ["Unknown", "?"])] | |
print(f"After precision filter: {filtered_df.shape}") | |
# Model Size フィルタリング | |
if "Unknown" in size_query: | |
size_mask = filtered_df["#Params (B)"].isna() | (filtered_df["#Params (B)"] == 0) | |
else: | |
size_mask = filtered_df["#Params (B)"].apply( | |
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown") | |
) | |
filtered_df = filtered_df[size_mask] | |
print(f"After size filter: {filtered_df.shape}") | |
# Add Special Tokens フィルタリング | |
filtered_df = filtered_df[filtered_df["Add Special Tokens"].isin(add_special_tokens_query + ["Unknown", "?"])] | |
print(f"After add_special_tokens filter: {filtered_df.shape}") | |
# Num Few Shots フィルタリング | |
filtered_df = filtered_df[ | |
filtered_df["Few-shot"].astype(str).isin([str(x) for x in num_few_shots_query] + ["Unknown", "?"]) | |
] | |
print(f"After num_few_shots filter: {filtered_df.shape}") | |
# Show deleted models フィルタリング | |
if not show_deleted: | |
filtered_df = filtered_df[filtered_df["Available on the hub"]] | |
print(f"After show_deleted filter: {filtered_df.shape}") | |
print("Filtered dataframe head:") | |
print(filtered_df.head()) | |
return filtered_df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[df[AutoEvalColumn.dummy.name].str.contains(query, case=False)] | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
"""Added by Abishek""" | |
if not query: | |
return filtered_df | |
final_df = [] | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[ | |
AutoEvalColumn.model.name, | |
AutoEvalColumn.precision.name, | |
AutoEvalColumn.revision.name, | |
] | |
) | |
return filtered_df | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
AutoEvalColumn.model_type_symbol.name, # 'T' | |
AutoEvalColumn.model.name, # 'Model' | |
] | |
# 'always_here_cols' を 'columns' から除外して重複を避ける | |
columns = [c for c in columns if c not in always_here_cols] | |
new_columns = ( | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] | |
) | |
# 重複を排除しつつ順序を維持 | |
seen = set() | |
unique_columns = [] | |
for c in new_columns: | |
if c not in seen: | |
unique_columns.append(c) | |
seen.add(c) | |
# フィルタリングされたカラムでデータフレームを作成 | |
filtered_df = df[unique_columns] | |
return filtered_df | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
type_query: list, | |
precision_query: str, | |
size_query: list, | |
add_special_tokens_query: list, | |
num_few_shots_query: list, | |
show_deleted: bool, | |
show_merges: bool, | |
show_flagged: bool, | |
query: str, | |
): | |
print( | |
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}" | |
) | |
print(f"hidden_df shape before filtering: {hidden_df.shape}") | |
filtered_df = filter_models( | |
hidden_df, | |
type_query, | |
size_query, | |
precision_query, | |
add_special_tokens_query, | |
num_few_shots_query, | |
show_deleted, | |
show_merges, | |
show_flagged, | |
) | |
print(f"filtered_df shape after filter_models: {filtered_df.shape}") | |
filtered_df = filter_queries(query, filtered_df) | |
print(f"filtered_df shape after filter_queries: {filtered_df.shape}") | |
print( | |
f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}" | |
) | |
print("Filtered dataframe head:") | |
print(filtered_df.head()) | |
df = select_columns(filtered_df, columns) | |
print(f"Final df shape: {df.shape}") | |
print("Final dataframe head:") | |
print(df.head()) | |
return df | |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists | |
query = request.query_params.get("query") or "" | |
return ( | |
query, | |
query, | |
) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed | |
# Prepare the dataframes | |
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
leaderboard_df = original_df.copy() | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
failed_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
leaderboard_df = filter_models( | |
leaderboard_df, | |
[t.to_str(" : ") for t in ModelType], | |
list(NUMERIC_INTERVALS.keys()), | |
[i.value.name for i in Precision], | |
[i.value.name for i in AddSpecialTokens], | |
[i.value.name for i in NumFewShots], | |
False, | |
False, | |
False, | |
) | |
leaderboard_df_filtered = filter_models( | |
leaderboard_df, | |
[t.to_str(" : ") for t in ModelType], | |
list(NUMERIC_INTERVALS.keys()), | |
[i.value.name for i in Precision], | |
[i.value.name for i in AddSpecialTokens], | |
[i.value.name for i in NumFewShots], | |
False, | |
False, | |
False, | |
) | |
# DataFrameの初期化部分のみを修正 | |
initial_columns = ["T"] + [ | |
c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T" | |
] | |
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns) | |
# Leaderboard demo | |
with gr.Blocks() as demo_leaderboard: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
label="Select columns to show", | |
choices=[ | |
c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.dummy | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
elem_id="column-select", | |
) | |
with gr.Row(): | |
deleted_models_visibility = gr.Checkbox(label="Show private/deleted models", value=False) | |
merged_models_visibility = gr.Checkbox(label="Show merges", value=False) | |
flagged_models_visibility = gr.Checkbox(label="Show flagged models", value=False) | |
with gr.Column(min_width=320): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=[t.to_str() for t in ModelType], | |
value=[t.to_str() for t in ModelType], | |
elem_id="filter-columns-type", | |
) | |
filter_columns_precision = gr.CheckboxGroup( | |
label="Precision", | |
choices=[i.value.name for i in Precision], | |
value=[i.value.name for i in Precision], | |
elem_id="filter-columns-precision", | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
elem_id="filter-columns-size", | |
) | |
filter_columns_add_special_tokens = gr.CheckboxGroup( | |
label="Add Special Tokens", | |
choices=[i.value.name for i in AddSpecialTokens], | |
value=[i.value.name for i in AddSpecialTokens], | |
elem_id="filter-columns-add-special-tokens", | |
) | |
filter_columns_num_few_shots = gr.CheckboxGroup( | |
label="Num Few Shots", | |
choices=[i.value.name for i in NumFewShots], | |
value=[i.value.name for i in NumFewShots], | |
elem_id="filter-columns-num-few-shots", | |
) | |
# DataFrameコンポーネントの初期化 | |
leaderboard_table = gr.Dataframe( | |
value=leaderboard_df_filtered, | |
headers=initial_columns, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
# Define a hidden component that will trigger a reload only if a query parameter has been set | |
hidden_search_bar = gr.Textbox(value="", visible=False) | |
gr.on( | |
triggers=[ | |
hidden_search_bar.change, | |
shown_columns.change, | |
filter_columns_type.change, | |
filter_columns_precision.change, | |
filter_columns_size.change, | |
filter_columns_add_special_tokens.change, | |
filter_columns_num_few_shots.change, | |
deleted_models_visibility.change, | |
merged_models_visibility.change, | |
flagged_models_visibility.change, | |
search_bar.submit, | |
], | |
fn=update_table, | |
inputs=[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
filter_columns_add_special_tokens, | |
filter_columns_num_few_shots, | |
deleted_models_visibility, | |
merged_models_visibility, | |
flagged_models_visibility, | |
search_bar, | |
], | |
outputs=leaderboard_table, | |
) | |
# Check query parameter once at startup and update search bar + hidden component | |
demo_leaderboard.load(fn=load_query, outputs=[search_bar, hidden_search_bar]) | |
# Submission demo | |
with gr.Blocks() as demo_submission: | |
with gr.Column(): | |
with gr.Row(): | |
evaluation_queue_text = gr.Markdown(EVALUATION_QUEUE_TEXT_JP, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.Dataframe( | |
value=running_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"❎ Failed Evaluation Queue ({len(failed_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
failed_eval_table = gr.Dataframe( | |
value=failed_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
model_type = gr.Dropdown( | |
label="Model type", | |
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
multiselect=False, | |
value=lambda: None, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
label="Precision", | |
choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
multiselect=False, | |
value="float16", | |
) | |
weight_type = gr.Dropdown( | |
label="Weights type", | |
choices=[i.value.name for i in WeightType], | |
multiselect=False, | |
value="Original", | |
) | |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
add_special_tokens = gr.Dropdown( | |
label="AddSpecialTokens", | |
choices=[i.value.name for i in AddSpecialTokens if i != AddSpecialTokens.Unknown], | |
multiselect=False, | |
value="False", | |
) | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
model_name_textbox, | |
base_model_name_textbox, | |
revision_name_textbox, | |
precision, | |
weight_type, | |
model_type, | |
add_special_tokens, | |
], | |
submission_result, | |
) | |
# Main demo | |
def set_default_language(request: gr.Request) -> gr.Dropdown: | |
if request.headers["Accept-Language"].split(",")[0].lower().startswith("ja"): | |
return gr.Dropdown(value="🇯🇵 JP") | |
else: | |
return gr.Dropdown(value="🇺🇸 EN") | |
def update_language(language: str) -> tuple[gr.Markdown, gr.Markdown]: | |
if language == "🇯🇵 JP": | |
return gr.Markdown(value=INTRODUCTION_TEXT_JP), gr.Markdown(value=EVALUATION_QUEUE_TEXT_JP) | |
else: | |
return gr.Markdown(value=INTRODUCTION_TEXT), gr.Markdown(value=EVALUATION_QUEUE_TEXT) | |
with gr.Blocks(css=custom_css, css_paths="style.css", theme=gr.themes.Base()) as demo: | |
gr.HTML(TITLE) | |
introduction_text = gr.Markdown(INTRODUCTION_TEXT_JP, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
demo_leaderboard.render() | |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
demo_submission.render() | |
with gr.Row(): | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
label=CITATION_BUTTON_LABEL, | |
value=CITATION_BUTTON_TEXT, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
gr.HTML(BOTTOM_LOGO) | |
language = gr.Dropdown( | |
choices=["🇯🇵 JP", "🇺🇸 EN"], | |
value="🇯🇵 JP", | |
elem_classes="language-selector", | |
show_label=False, | |
container=False, | |
) | |
demo.load(fn=set_default_language, outputs=language) | |
language.change( | |
fn=update_language, | |
inputs=language, | |
outputs=[introduction_text, evaluation_queue_text], | |
api_name=False, | |
) | |
if __name__ == "__main__": | |
if os.getenv("SPACE_ID"): | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |