hysts's picture
hysts HF staff
Hide label in the size vs. score graph by default
39a5dc9
import os
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
BOTTOM_LOGO,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_LABEL_JA,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
EVALUATION_QUEUE_TEXT_JA,
INTRODUCTION_TEXT,
INTRODUCTION_TEXT_JA,
LLM_BENCHMARKS_TEXT,
LLM_BENCHMARKS_TEXT_JA,
TITLE,
TaskType,
)
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AddSpecialTokens,
AutoEvalColumn,
LLMJpEvalVersion,
ModelType,
NumFewShots,
Precision,
VllmVersion,
fields,
)
from src.envs import API, CONTENTS_REPO, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID
from src.i18n import (
CITATION_ACCORDION_LABEL,
CITATION_ACCORDION_LABEL_JA,
SELECT_ALL_BUTTON_LABEL,
SELECT_ALL_BUTTON_LABEL_JA,
SELECT_AVG_ONLY_BUTTON_LABEL,
SELECT_AVG_ONLY_BUTTON_LABEL_JA,
SELECT_NONE_BUTTON_LABEL,
SELECT_NONE_BUTTON_LABEL_JA,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space() -> None:
API.restart_space(repo_id=REPO_ID)
# Space initialization
try:
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
)
except Exception:
restart_space()
# Get dataframes
(
FINISHED_EVAL_QUEUE_DF,
RUNNING_EVAL_QUEUE_DF,
PENDING_EVAL_QUEUE_DF,
FAILED_EVAL_QUEUE_DF,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
try:
ORIGINAL_DF = get_leaderboard_df(CONTENTS_REPO, COLS, BENCHMARK_COLS)
except Exception as e:
print(f"Error getting leaderboard df: {e}")
ORIGINAL_DF = pd.DataFrame()
# Searching and filtering
def filter_models(
df: pd.DataFrame,
type_query: list[str],
size_query: list[str],
precision_query: list[str],
add_special_tokens_query: list[str],
num_few_shots_query: list[int],
version_query: list[str],
vllm_query: list[str],
) -> pd.DataFrame:
# Filter by model type
type_emoji = [t.split()[0] for t in type_query]
df = df[df["T"].isin(type_emoji)]
# Filter by precision
df = df[df["Precision"].isin(precision_query)]
# Filter by model size
# Note: When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0),
# so we need to check the length of `df` before applying the filter.
if len(df) > 0:
size_mask = df["#Params (B)"].apply(
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
)
if "Unknown" in size_query:
size_mask |= df["#Params (B)"].isna() | (df["#Params (B)"] == 0)
df = df[size_mask]
# Filter by special tokens setting
df = df[df["Add Special Tokens"].isin(add_special_tokens_query)]
# Filter by number of few-shot examples
df = df[df["Few-shot"].isin(num_few_shots_query)]
# Filter by evaluator version
df = df[df["llm-jp-eval version"].isin(version_query)]
# Filter by vLLM version
df = df[df["vllm version"].isin(vllm_query)]
return df
def search_model_by_name(df: pd.DataFrame, model_name: str) -> pd.DataFrame:
return df[df[AutoEvalColumn.dummy.name].str.contains(model_name, case=False)]
def search_models_by_multiple_names(df: pd.DataFrame, search_text: str) -> pd.DataFrame:
if not search_text:
return df
model_names = [name.strip() for name in search_text.split(";")]
dfs = [search_model_by_name(df, name) for name in model_names if name]
return pd.concat(dfs).drop_duplicates(subset=AutoEvalColumn.row_id.name)
def select_columns(df: pd.DataFrame, columns: list[str]) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name, # 'T'
AutoEvalColumn.model.name, # 'Model'
]
# Remove 'always_here_cols' from 'columns' to avoid duplicates
columns = [c for c in columns if c not in always_here_cols]
new_columns = (
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.row_id.name]
)
# Maintain order while removing duplicates
seen = set()
unique_columns = []
for c in new_columns:
if c not in seen:
unique_columns.append(c)
seen.add(c)
# Create DataFrame with filtered columns
filtered_df = df[unique_columns]
return filtered_df
def update_table(
type_query: list[str],
precision_query: list[str],
size_query: list[str],
add_special_tokens_query: list[str],
num_few_shots_query: list[int],
version_query: list[str],
vllm_query: list[str],
query: str,
*columns,
) -> pd.DataFrame:
columns = [item for column in columns for item in column]
df = filter_models(
ORIGINAL_DF,
type_query,
size_query,
precision_query,
add_special_tokens_query,
num_few_shots_query,
version_query,
vllm_query,
)
df = search_models_by_multiple_names(df, query)
df = select_columns(df, columns)
return df
# Prepare the dataframes
INITIAL_COLUMNS = ["T"] + [
c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T"
]
leaderboard_df = ORIGINAL_DF.copy()
if len(leaderboard_df) > 0:
leaderboard_df = filter_models(
leaderboard_df,
[t.to_str(" : ") for t in ModelType],
list(NUMERIC_INTERVALS.keys()),
[i.value.name for i in Precision],
[i.value.name for i in AddSpecialTokens],
[i.value for i in NumFewShots],
[i.value.name for i in LLMJpEvalVersion],
[i.value.name for i in VllmVersion],
)
leaderboard_df = select_columns(leaderboard_df, INITIAL_COLUMNS)
else:
leaderboard_df = pd.DataFrame(columns=INITIAL_COLUMNS)
# Leaderboard demo
def toggle_all_categories(action: str) -> list[gr.CheckboxGroup]:
"""Function to control all category checkboxes at once"""
results = []
for task_type in TaskType:
if task_type == TaskType.NotTask:
# Maintain existing selection for Model details
results.append(gr.CheckboxGroup())
else:
if action == "all":
# Select all
results.append(
gr.CheckboxGroup(
value=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy and c.task_type == task_type
]
)
)
elif action == "none":
# Deselect all
results.append(gr.CheckboxGroup(value=[]))
elif action == "avg_only":
# Select only AVG metrics
results.append(
gr.CheckboxGroup(
value=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden
and not c.never_hidden
and c.task_type == task_type
and ((task_type == TaskType.AVG) or (task_type != TaskType.AVG and c.average))
]
)
)
return results
TASK_AVG_NAME_MAP = {
c.name: c.task_type.name for c in fields(AutoEvalColumn) if c.average and c.task_type != TaskType.AVG
}
AVG_COLUMNS = ["AVG"] + list(TASK_AVG_NAME_MAP.keys())
def plot_size_vs_score(df_filtered: pd.DataFrame) -> go.Figure:
df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])]
df = df[df["#Params (B)"] > 0]
df = df[["model_name_for_query", "#Params (B)", "Few-shot"] + AVG_COLUMNS]
df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"})
df["model_name_without_org_name"] = df["Model"].str.split("/").str[-1] + " (" + df["n-shot"].astype(str) + "-shot)"
df = pd.melt(
df,
id_vars=["Model", "model_name_without_org_name", "#Params (B)", "n-shot"],
value_vars=AVG_COLUMNS,
var_name="Category",
value_name="Score",
)
max_model_size = df["#Params (B)"].max()
fig = px.scatter(
df,
x="#Params (B)",
y="Score",
text="model_name_without_org_name",
color="Category",
hover_data=["Model", "n-shot", "Category"],
)
fig.update_traces(
hovertemplate="<b>%{customdata[0]}</b><br>#Params: %{x:.2f}B<br>n-shot: %{customdata[1]}<br>%{customdata[2]}: %{y:.4f}<extra></extra>",
textposition="top right",
mode="markers",
)
for trace in fig.data:
if trace.name != "AVG":
trace.visible = "legendonly"
fig.update_layout(xaxis_range=[0, max_model_size * 1.2], yaxis_range=[0, 1])
fig.update_layout(
updatemenus=[
dict(
type="buttons",
direction="left",
showactive=True,
buttons=[
dict(label="Hide Labels", method="update", args=[{"mode": ["markers"]}]),
dict(label="Show Labels", method="update", args=[{"mode": ["markers+text"]}]),
],
x=0.5,
y=-0.2,
xanchor="center",
yanchor="top",
)
]
)
return fig
def plot_average_scores(df_filtered: pd.DataFrame) -> go.Figure:
df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])]
df = df[["model_name_for_query", "Few-shot"] + list(TASK_AVG_NAME_MAP.keys())]
df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"})
df = df.rename(columns=TASK_AVG_NAME_MAP)
df = df.set_index(["Model", "n-shot"])
fig = go.Figure()
for i, ((name, n_shot), row) in enumerate(df.iterrows()):
visible = True if i < 2 else "legendonly" # Display only the first 2 models
fig.add_trace(
go.Scatterpolar(
r=row.values,
theta=row.index,
fill="toself",
name=f"{name} ({n_shot}-shot)",
hovertemplate="%{theta}: %{r}",
visible=visible,
)
)
fig.update_layout(
polar={
"radialaxis": {"range": [0, 1]},
},
showlegend=True,
)
return fig
shown_columns_dict: dict[str, gr.CheckboxGroup] = {}
checkboxes: list[gr.CheckboxGroup] = []
with gr.Blocks() as demo_leaderboard:
with gr.Row():
search_bar = gr.Textbox(
placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Accordion("Column Filter", open=True):
with gr.Row():
with gr.Row():
select_all_button = gr.Button(SELECT_ALL_BUTTON_LABEL_JA, size="sm")
select_none_button = gr.Button(SELECT_NONE_BUTTON_LABEL_JA, size="sm")
select_avg_only_button = gr.Button(SELECT_AVG_ONLY_BUTTON_LABEL_JA, size="sm")
for task_type in TaskType:
if task_type == TaskType.NotTask:
label = "Model details"
else:
label = task_type.value
with gr.Accordion(label, open=True, elem_classes="accordion"):
with gr.Row(height=110):
shown_column = gr.CheckboxGroup(
show_label=False,
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy and c.task_type == task_type
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default
and not c.hidden
and not c.never_hidden
and c.task_type == task_type
],
elem_id="column-select",
container=False,
)
shown_columns_dict[task_type.name] = shown_column
checkboxes.append(shown_column)
with gr.Accordion("Model Filter", open=True):
with gr.Row():
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
elem_id="filter-columns-size",
)
filter_columns_add_special_tokens = gr.CheckboxGroup(
label="Add Special Tokens",
choices=[i.value.name for i in AddSpecialTokens],
value=[i.value.name for i in AddSpecialTokens],
elem_id="filter-columns-add-special-tokens",
)
filter_columns_num_few_shots = gr.CheckboxGroup(
label="Num Few Shots",
choices=[i.value for i in NumFewShots],
value=[i.value for i in NumFewShots],
elem_id="filter-columns-num-few-shots",
)
filter_columns_version = gr.CheckboxGroup(
label="llm-jp-eval version",
choices=[i.value.name for i in LLMJpEvalVersion],
value=[i.value.name for i in LLMJpEvalVersion],
elem_id="filter-columns-version",
)
filter_columns_vllm = gr.CheckboxGroup(
label="vllm version",
choices=[i.value.name for i in VllmVersion],
value=[i.value.name for i in VllmVersion],
elem_id="filter-columns-vllm",
)
leaderboard_table = gr.Dataframe(
value=leaderboard_df,
headers=INITIAL_COLUMNS,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
graph_size_vs_score = gr.Plot(label="Size vs. Score")
graph_average_scores = gr.Plot(label="Performance across Task Categories")
select_all_button.click(
fn=lambda: toggle_all_categories("all"),
outputs=checkboxes,
api_name=False,
queue=False,
)
select_none_button.click(
fn=lambda: toggle_all_categories("none"),
outputs=checkboxes,
api_name=False,
queue=False,
)
select_avg_only_button.click(
fn=lambda: toggle_all_categories("avg_only"),
outputs=checkboxes,
api_name=False,
queue=False,
)
gr.on(
triggers=[
filter_columns_type.change,
filter_columns_precision.change,
filter_columns_size.change,
filter_columns_add_special_tokens.change,
filter_columns_num_few_shots.change,
filter_columns_version.change,
filter_columns_vllm.change,
search_bar.submit,
]
+ [shown_columns.change for shown_columns in shown_columns_dict.values()],
fn=update_table,
inputs=[
filter_columns_type,
filter_columns_precision,
filter_columns_size,
filter_columns_add_special_tokens,
filter_columns_num_few_shots,
filter_columns_version,
filter_columns_vllm,
search_bar,
]
+ [shown_columns for shown_columns in shown_columns_dict.values()],
outputs=leaderboard_table,
)
leaderboard_table.change(
fn=plot_size_vs_score,
inputs=leaderboard_table,
outputs=graph_size_vs_score,
api_name=False,
queue=False,
)
leaderboard_table.change(
fn=plot_average_scores,
inputs=leaderboard_table,
outputs=graph_average_scores,
api_name=False,
queue=False,
)
# Submission demo
with gr.Blocks() as demo_submission:
with gr.Column():
with gr.Row():
evaluation_queue_text = gr.Markdown(EVALUATION_QUEUE_TEXT_JA, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(FINISHED_EVAL_QUEUE_DF)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.Dataframe(
value=FINISHED_EVAL_QUEUE_DF,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(RUNNING_EVAL_QUEUE_DF)})",
open=False,
):
with gr.Row():
running_eval_table = gr.Dataframe(
value=RUNNING_EVAL_QUEUE_DF,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(PENDING_EVAL_QUEUE_DF)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.Dataframe(
value=PENDING_EVAL_QUEUE_DF,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"❎ Failed Evaluation Queue ({len(FAILED_EVAL_QUEUE_DF)})",
open=False,
):
with gr.Row():
failed_eval_table = gr.Dataframe(
value=FAILED_EVAL_QUEUE_DF,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
label="Model type",
choices=[t.to_str(" : ") for t in ModelType],
multiselect=False,
value=None,
)
with gr.Column():
precision = gr.Dropdown(
label="Precision",
choices=[i.value.name for i in Precision] + ["auto"],
multiselect=False,
value="auto",
)
add_special_tokens = gr.Dropdown(
label="AddSpecialTokens",
choices=[i.value.name for i in AddSpecialTokens],
multiselect=False,
value="False",
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
revision_name_textbox,
precision,
model_type,
add_special_tokens,
],
outputs=submission_result,
)
# Main demo
def set_default_language(request: gr.Request) -> gr.Radio:
if request.headers["Accept-Language"].split(",")[0].lower().startswith("ja"):
return gr.Radio(value="πŸ‡―πŸ‡΅ JA")
else:
return gr.Radio(value="πŸ‡ΊπŸ‡Έ EN")
def update_language(
language: str,
) -> tuple[
gr.Markdown, # introduction_text
gr.Markdown, # llm_benchmarks_text
gr.Markdown, # evaluation_queue_text
gr.Textbox, # citation_button
gr.Button, # select_all_button
gr.Button, # select_none_button
gr.Button, # select_avg_only_button
gr.Accordion, # citation_accordion
]:
if language == "πŸ‡―πŸ‡΅ JA":
return (
gr.Markdown(value=INTRODUCTION_TEXT_JA),
gr.Markdown(value=LLM_BENCHMARKS_TEXT_JA),
gr.Markdown(value=EVALUATION_QUEUE_TEXT_JA),
gr.Textbox(label=CITATION_BUTTON_LABEL_JA),
gr.Button(value=SELECT_ALL_BUTTON_LABEL_JA),
gr.Button(value=SELECT_NONE_BUTTON_LABEL_JA),
gr.Button(value=SELECT_AVG_ONLY_BUTTON_LABEL_JA),
gr.Accordion(label=CITATION_ACCORDION_LABEL_JA),
)
else:
return (
gr.Markdown(value=INTRODUCTION_TEXT),
gr.Markdown(value=LLM_BENCHMARKS_TEXT),
gr.Markdown(value=EVALUATION_QUEUE_TEXT),
gr.Textbox(label=CITATION_BUTTON_LABEL),
gr.Button(value=SELECT_ALL_BUTTON_LABEL),
gr.Button(value=SELECT_NONE_BUTTON_LABEL),
gr.Button(value=SELECT_AVG_ONLY_BUTTON_LABEL),
gr.Accordion(label=CITATION_ACCORDION_LABEL),
)
with gr.Blocks(css_paths="style.css", theme=gr.themes.Glass()) as demo:
gr.HTML(TITLE)
introduction_text = gr.Markdown(INTRODUCTION_TEXT_JA, elem_classes="markdown-text")
with gr.Tabs() as tabs:
with gr.Tab("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table"):
demo_leaderboard.render()
with gr.Tab("πŸ“ About", elem_id="llm-benchmark-tab-about"):
llm_benchmarks_text = gr.Markdown(LLM_BENCHMARKS_TEXT_JA, elem_classes="markdown-text")
with gr.Tab("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-submit"):
demo_submission.render()
with gr.Row():
with gr.Accordion(CITATION_ACCORDION_LABEL_JA, open=False) as citation_accordion:
citation_button = gr.Textbox(
label=CITATION_BUTTON_LABEL_JA,
value=CITATION_BUTTON_TEXT,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
gr.HTML(BOTTOM_LOGO)
language = gr.Radio(
choices=["πŸ‡―πŸ‡΅ JA", "πŸ‡ΊπŸ‡Έ EN"],
value="πŸ‡―πŸ‡΅ JA",
elem_classes="language-selector",
show_label=False,
container=False,
)
demo.load(fn=set_default_language, outputs=language)
language.change(
fn=update_language,
inputs=language,
outputs=[
introduction_text,
llm_benchmarks_text,
evaluation_queue_text,
citation_button,
select_all_button,
select_none_button,
select_avg_only_button,
citation_accordion,
],
api_name=False,
)
if __name__ == "__main__":
if os.getenv("SPACE_ID"):
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()