Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -143,37 +143,41 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
143 |
def filter_models(
|
144 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
145 |
) -> pd.DataFrame:
|
146 |
-
print(f"filter_models called with: type_query={type_query}, size_query={size_query}, precision_query={precision_query}")
|
147 |
print(f"Initial df shape: {df.shape}")
|
|
|
148 |
|
149 |
-
# 各フィルタリング操作の後にprint文を追加
|
150 |
if show_deleted:
|
151 |
filtered_df = df
|
152 |
else:
|
153 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
154 |
print(f"After deletion filter: {filtered_df.shape}")
|
|
|
155 |
|
156 |
type_emoji = [t[0] for t in type_query]
|
157 |
-
filtered_df = filtered_df.loc[
|
158 |
print(f"After type filter: {filtered_df.shape}")
|
|
|
159 |
|
160 |
-
|
161 |
-
|
|
|
162 |
|
163 |
-
filtered_df = filtered_df.loc[
|
164 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
|
|
165 |
|
166 |
-
filtered_df = filtered_df.loc[
|
167 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
|
|
168 |
|
169 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
170 |
-
params_column = pd.to_numeric(
|
171 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
172 |
filtered_df = filtered_df.loc[mask]
|
173 |
print(f"After size filter: {filtered_df.shape}")
|
|
|
174 |
|
175 |
-
print("Filtered dataframe head:")
|
176 |
-
print(filtered_df.head())
|
177 |
return filtered_df
|
178 |
|
179 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
@@ -261,7 +265,7 @@ with demo:
|
|
261 |
value=leaderboard_df[
|
262 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
263 |
+ shown_columns.value
|
264 |
-
]
|
265 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
266 |
datatype=TYPES,
|
267 |
elem_id="leaderboard-table",
|
|
|
143 |
def filter_models(
|
144 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
145 |
) -> pd.DataFrame:
|
146 |
+
print(f"filter_models called with: type_query={type_query}, size_query={size_query}, precision_query={precision_query}, add_special_tokens_query={add_special_tokens_query}, num_few_shots_query={num_few_shots_query}")
|
147 |
print(f"Initial df shape: {df.shape}")
|
148 |
+
print(f"Initial df content:\n{df}")
|
149 |
|
|
|
150 |
if show_deleted:
|
151 |
filtered_df = df
|
152 |
else:
|
153 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
154 |
print(f"After deletion filter: {filtered_df.shape}")
|
155 |
+
print(f"After deletion filter content:\n{filtered_df}")
|
156 |
|
157 |
type_emoji = [t[0] for t in type_query]
|
158 |
+
filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
159 |
print(f"After type filter: {filtered_df.shape}")
|
160 |
+
print(f"After type filter content:\n{filtered_df}")
|
161 |
|
162 |
+
filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
163 |
+
print(f"After precision filter: {filtered_df.shape}")
|
164 |
+
print(f"After precision filter content:\n{filtered_df}")
|
165 |
|
166 |
+
filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
167 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
168 |
+
print(f"After add_special_tokens filter content:\n{filtered_df}")
|
169 |
|
170 |
+
filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
171 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
172 |
+
print(f"After num_few_shots filter content:\n{filtered_df}")
|
173 |
|
174 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
175 |
+
params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
|
176 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
177 |
filtered_df = filtered_df.loc[mask]
|
178 |
print(f"After size filter: {filtered_df.shape}")
|
179 |
+
print(f"After size filter content:\n{filtered_df}")
|
180 |
|
|
|
|
|
181 |
return filtered_df
|
182 |
|
183 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
|
265 |
value=leaderboard_df[
|
266 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
267 |
+ shown_columns.value
|
268 |
+
],
|
269 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
270 |
datatype=TYPES,
|
271 |
elem_id="leaderboard-table",
|