Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Remove unnecessary table operations
Browse files- app.py +0 -23
- src/populate.py +0 -2
app.py
CHANGED
@@ -167,16 +167,6 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
167 |
unique_columns.append(c)
|
168 |
seen.add(c)
|
169 |
|
170 |
-
# 'Model' カラムにリンクを含む形式で再構築
|
171 |
-
if "Model" in df.columns:
|
172 |
-
df["Model"] = df["Model"].apply(
|
173 |
-
lambda x: (
|
174 |
-
f'[{x.split(">")[-2].split("<")[0]}]({x.split("href=")[1].split(chr(34))[1]})'
|
175 |
-
if isinstance(x, str) and "href=" in x
|
176 |
-
else x
|
177 |
-
)
|
178 |
-
)
|
179 |
-
|
180 |
# フィルタリングされたカラムでデータフレームを作成
|
181 |
filtered_df = df[unique_columns]
|
182 |
return filtered_df
|
@@ -278,19 +268,6 @@ initial_columns = ["T"] + [
|
|
278 |
]
|
279 |
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
|
280 |
|
281 |
-
# Model列のリンク形式を修正
|
282 |
-
leaderboard_df_filtered["Model"] = leaderboard_df_filtered["Model"].apply(
|
283 |
-
lambda x: (
|
284 |
-
f'[{x.split(">")[-2].split("<")[0]}]({x.split("href=")[1].split(chr(34))[1]})'
|
285 |
-
if isinstance(x, str) and "href=" in x
|
286 |
-
else x
|
287 |
-
)
|
288 |
-
)
|
289 |
-
|
290 |
-
# 数値データを文字列に変換
|
291 |
-
for col in leaderboard_df_filtered.columns:
|
292 |
-
if col not in ["T", "Model"]:
|
293 |
-
leaderboard_df_filtered[col] = leaderboard_df_filtered[col].astype(str)
|
294 |
|
295 |
# Leaderboard demo
|
296 |
|
|
|
167 |
unique_columns.append(c)
|
168 |
seen.add(c)
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
# フィルタリングされたカラムでデータフレームを作成
|
171 |
filtered_df = df[unique_columns]
|
172 |
return filtered_df
|
|
|
268 |
]
|
269 |
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
# Leaderboard demo
|
273 |
|
src/populate.py
CHANGED
@@ -36,8 +36,6 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
36 |
# filter out if any of the benchmarks have not been produced
|
37 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
38 |
|
39 |
-
df["Model"] = df["Model"].apply(lambda x: f'[{x.split("/")[-1]}]({x})' if isinstance(x, str) else x)
|
40 |
-
|
41 |
return df
|
42 |
|
43 |
|
|
|
36 |
# filter out if any of the benchmarks have not been produced
|
37 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
38 |
|
|
|
|
|
39 |
return df
|
40 |
|
41 |
|