Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -172,8 +172,9 @@ def filter_models(
|
|
172 |
filtered_df = df
|
173 |
|
174 |
# Model Type フィルタリング
|
|
|
175 |
type_emoji = [t.split()[0] for t in type_query]
|
176 |
-
filtered_df =
|
177 |
print(f"After type filter: {filtered_df.shape}")
|
178 |
|
179 |
# Precision フィルタリング
|
@@ -395,10 +396,15 @@ with demo:
|
|
395 |
print(f"'Type_' カラムのデータ型: {leaderboard_df_filtered['Type_'].dtype}")
|
396 |
print(f"'Type_' カラムのユニーク値: {leaderboard_df_filtered['Type_'].unique()}")
|
397 |
|
398 |
-
|
|
|
|
|
|
|
|
|
399 |
leaderboard_table = gr.components.Dataframe(
|
400 |
value=leaderboard_df_filtered,
|
401 |
-
|
|
|
402 |
elem_id="leaderboard-table",
|
403 |
interactive=False,
|
404 |
visible=True,
|
|
|
172 |
filtered_df = df
|
173 |
|
174 |
# Model Type フィルタリング
|
175 |
+
type_column = 'T' if 'T' in df.columns else 'Type_'
|
176 |
type_emoji = [t.split()[0] for t in type_query]
|
177 |
+
filtered_df = df[df[type_column].isin(type_emoji)]
|
178 |
print(f"After type filter: {filtered_df.shape}")
|
179 |
|
180 |
# Precision フィルタリング
|
|
|
396 |
print(f"'Type_' カラムのデータ型: {leaderboard_df_filtered['Type_'].dtype}")
|
397 |
print(f"'Type_' カラムのユニーク値: {leaderboard_df_filtered['Type_'].unique()}")
|
398 |
|
399 |
+
datatype = {col: "str" for col in leaderboard_df_filtered.columns}
|
400 |
+
datatype['Model'] = "markdown"
|
401 |
+
type_column = 'T' if 'T' in leaderboard_df_filtered.columns else 'Type_'
|
402 |
+
datatype[type_column] = "str"
|
403 |
+
|
404 |
leaderboard_table = gr.components.Dataframe(
|
405 |
value=leaderboard_df_filtered,
|
406 |
+
headers=list(leaderboard_df_filtered.columns),
|
407 |
+
datatype=datatype,
|
408 |
elem_id="leaderboard-table",
|
409 |
interactive=False,
|
410 |
visible=True,
|