from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks, TaskType def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False dummy: bool = False task_type: TaskType = TaskType.NotTask average: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) # Scores # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) for task in Tasks: auto_eval_column_dict.append( [ task.name, ColumnContent, ColumnContent( task.value.col_name, "number", displayed_by_default=(task.value.task_type == TaskType.AVG or task.value.average), task_type=task.value.task_type, average=task.value.average, ), ] ) # Model information auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Revision", "str", False, False)]) auto_eval_column_dict.append(["num_few_shots", ColumnContent, ColumnContent("Few-shot", "str", False)]) auto_eval_column_dict.append(["add_special_tokens", ColumnContent, ColumnContent("Add Special Tokens", "bool", False)]) auto_eval_column_dict.append( ["llm_jp_eval_version", ColumnContent, ColumnContent("llm-jp-eval version", "str", False)] ) auto_eval_column_dict.append(["backend", ColumnContent, ColumnContent("Backend Library", "str", False, dummy=True)]) auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) model_type = ColumnContent("model_type", "str", True) precision = ColumnContent("precision", "str", True) add_special_tokens = ColumnContent("add_special_tokens", "str", True) status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") FT = ModelDetails(name="fine-tuned", symbol="🔶") IFT = ModelDetails(name="instruction-tuned", symbol="⭕") RL = ModelDetails(name="RL-tuned", symbol="🟦") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔶" in type: return ModelType.FT if "pretrained" in type or "🟢" in type: return ModelType.PT if "RL-tuned" in type or "🟦" in type: return ModelType.RL if "instruction-tuned" in type or "⭕" in type: return ModelType.IFT return ModelType.Unknown class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") Unknown = ModelDetails("?") def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 return Precision.Unknown class AddSpecialTokens(Enum): true = ModelDetails("True") false = ModelDetails("False") Unknown = ModelDetails("?") class NumFewShots(Enum): shots_0 = ModelDetails("0") shots_4 = ModelDetails("4") Unknown = ModelDetails("?") def from_str(shots): if shots == "0": return NumFewShots.shots_0 if shots == "4": return NumFewShots.shots_4 return NumFewShots.Unknown class Version(Enum): v1_4_1 = ModelDetails("v1.4.1") Unknown = ModelDetails("?") def from_str(version): if version == "1.4.1": return Version.v1_4_1 else: return Version.Unknown class Backend(Enum): vllm = ModelDetails("vllm") Unknown = ModelDetails("?") def from_str(backend): if backend == "vllm": return Backend.vllm else: return Backend.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] TYPES = [c.type for c in fields(AutoEvalColumn)] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks] NUMERIC_INTERVALS = { "0~3B": pd.Interval(0, 3, closed="right"), "3~7B": pd.Interval(3, 7.3, closed="right"), "7~13B": pd.Interval(7.3, 13, closed="right"), "13~35B": pd.Interval(13, 35, closed="right"), "35~60B": pd.Interval(35, 60, closed="right"), "60B+": pd.Interval(60, 10000, closed="right"), "?": pd.Interval(-1, 0, closed="right"), }