import json import os from datetime import datetime, timezone from src.display.formatting import styled_error, styled_message, styled_warning from src.display.utils import Version, VllmVersion from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, TOKEN from src.submission.check_validity import already_submitted_models, check_model_card, is_model_on_hub REQUESTED_MODELS = None USERS_TO_SUBMISSION_DATES = None def add_new_eval( model: str, revision: str, precision: str, model_type: str, add_special_tokens: str, ): global REQUESTED_MODELS global USERS_TO_SUBMISSION_DATES if not REQUESTED_MODELS: REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) current_version = Version.v1_4_1.value.name current_vllm_version = VllmVersion.current.value.name # バージョン情報を含めた重複チェック submission_id = f"{model}_{precision}_{add_special_tokens}_{current_version}_{current_vllm_version}" if submission_id in REQUESTED_MODELS: return styled_warning( f"This model has already been evaluated with llm-jp-eval version {current_version} " f"and vllm version {current_vllm_version}" ) user_name = "" model_path = model if "/" in model: user_name = model.split("/")[0] model_path = model.split("/")[1] precision = precision.split(" ")[0] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if model_type is None or model_type == "": return styled_error("Please select a model type.") # Does the model actually exist? if revision == "": revision = "main" # Is the model on the hub? model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) if not model_on_hub: return styled_error(f'Model "{model}" {error}') # Is the model info correctly filled? try: model_info = API.model_info(repo_id=model, revision=revision) except Exception: return styled_error("Could not get your model information. Please fill it up properly.") # Were the model card and license filled? try: _ = model_info.cardData["license"] except Exception: return styled_error("Please select a license for your model") modelcard_OK, error_msg = check_model_card(model) if not modelcard_OK: return styled_error(error_msg) # Seems good, creating the eval print("Adding new eval") eval_entry = { "model_type": model_type, "model": model, "precision": precision, "revision": revision, "add_special_tokens": add_special_tokens, "llm_jp_eval_version": current_version, "vllm_version": current_vllm_version, "status": "PENDING", "submitted_time": current_time, } # Check for duplicate submission if f"{model}_{precision}_{add_special_tokens}" in REQUESTED_MODELS: return styled_warning("This model has been already submitted.") print("Creating eval file") OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = ( f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{add_special_tokens}_{current_vllm_version}.json" ) with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model} to eval queue", ) # Remove the local file os.remove(out_path) return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." )