Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import gc | |
import toml | |
import gradio as gr | |
import numpy as np | |
import utils | |
import torch | |
import json | |
import PIL.Image | |
import base64 | |
import safetensors | |
from io import BytesIO | |
from typing import Tuple | |
import gradio_user_history as gr_user_history | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer | |
from lora_diffusers import LoRANetwork, create_network_from_weights | |
from diffusers.models import AutoencoderKL | |
from diffusers import ( | |
LCMScheduler, | |
StableDiffusionXLPipeline, | |
StableDiffusionXLImg2ImgPipeline, | |
DPMSolverMultistepScheduler, | |
DPMSolverSinglestepScheduler, | |
KDPM2DiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LMSDiscreteScheduler, | |
DDIMScheduler, | |
DEISMultistepScheduler, | |
UniPCMultistepScheduler, | |
) | |
DESCRIPTION = "Animagine XL 2.0" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>" | |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" | |
ENABLE_REFINER_PROMPT = os.getenv("ENABLE_REFINER_PROMPT") == "1" | |
MAX_SEED = np.iinfo(np.int32).max | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" | |
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
MODEL = os.getenv("MODEL", "Linaqruf/animagine-xl-2.0") | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
if ENABLE_REFINER_PROMPT: | |
tokenizer = AutoTokenizer.from_pretrained("isek-ai/SDPrompt-RetNet-300M") | |
tuner = AutoModelForCausalLM.from_pretrained( | |
"isek-ai/SDPrompt-RetNet-300M", | |
trust_remote_code=True, | |
).to(device) | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", | |
torch_dtype=torch.float16, | |
) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
MODEL, | |
vae=vae, | |
torch_dtype=torch.float16, | |
custom_pipeline="lpw_stable_diffusion_xl", | |
use_safetensors=True, | |
use_auth_token=HF_TOKEN, | |
variant="fp16", | |
) | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
else: | |
pipe = None | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def seed_everything(seed): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
generator = torch.Generator() | |
generator.manual_seed(seed) | |
return generator | |
def get_image_path(base_path: str): | |
extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif"] | |
for ext in extensions: | |
image_path = base_path + ext | |
if os.path.exists(image_path): | |
return image_path | |
return None | |
def update_lcm_parameter(enable_lcm: bool = False): | |
if enable_lcm: | |
return (2, 8, gr.update(value="LCM"), gr.update(choices=["LCM"])) | |
else: | |
return (12, 50, gr.update(value="Euler a"), gr.update(choices=sampler_list)) | |
def update_selection(selected_state: gr.SelectData): | |
lora_repo = sdxl_loras[selected_state.index]["repo"] | |
lora_weight = sdxl_loras[selected_state.index]["multiplier"] | |
updated_selected_info = f"{lora_repo}" | |
return ( | |
updated_selected_info, | |
selected_state, | |
lora_weight, | |
) | |
def parse_aspect_ratio(aspect_ratio): | |
if aspect_ratio == "Custom": | |
return None, None | |
width, height = aspect_ratio.split(" x ") | |
return int(width), int(height) | |
def aspect_ratio_handler(aspect_ratio, custom_width, custom_height): | |
if aspect_ratio == "Custom": | |
return custom_width, custom_height | |
else: | |
width, height = parse_aspect_ratio(aspect_ratio) | |
return width, height | |
def create_network(text_encoders, unet, state_dict, multiplier, device): | |
network = create_network_from_weights( | |
text_encoders, | |
unet, | |
state_dict, | |
multiplier, | |
) | |
network.load_state_dict(state_dict) | |
network.to(device, dtype=unet.dtype) | |
network.apply_to(multiplier=multiplier) | |
return network | |
def get_scheduler(scheduler_config, name): | |
scheduler_map = { | |
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config( | |
scheduler_config, use_karras_sigmas=True | |
), | |
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config( | |
scheduler_config, use_karras_sigmas=True | |
), | |
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config( | |
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++" | |
), | |
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config), | |
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config( | |
scheduler_config | |
), | |
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config), | |
"LCM": lambda: LCMScheduler.from_config(scheduler_config), | |
} | |
return scheduler_map.get(name, lambda: None)() | |
def free_memory(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
def preprocess_prompt( | |
style_dict, | |
style_name: str, | |
positive: str, | |
negative: str = "", | |
) -> Tuple[str, str]: | |
p, n = style_dict.get(style_name, styles["(None)"]) | |
return p.format(prompt=positive), n + negative | |
def common_upscale(samples, width, height, upscale_method): | |
return torch.nn.functional.interpolate( | |
samples, size=(height, width), mode=upscale_method | |
) | |
def upscale(samples, upscale_method, scale_by): | |
width = round(samples.shape[3] * scale_by) | |
height = round(samples.shape[2] * scale_by) | |
s = common_upscale(samples, width, height, upscale_method) | |
return s | |
def prompt_completion( | |
input_text, | |
max_new_tokens=128, | |
do_sample=True, | |
temperature=1.0, | |
top_p=0.95, | |
top_k=20, | |
repetition_penalty=1.2, | |
num_beams=1, | |
): | |
try: | |
if input_text.strip() == "": | |
return "" | |
inputs = tokenizer( | |
f"<s>{input_text}", return_tensors="pt", add_special_tokens=False | |
)["input_ids"].to(device) | |
result = tuner.generate( | |
inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
num_beams=num_beams, | |
) | |
return tokenizer.batch_decode(result, skip_special_tokens=True)[0] | |
except Exception as e: | |
print(f"An error occured: {e}") | |
raise | |
finally: | |
free_memory() | |
def load_and_convert_thumbnail(model_path: str): | |
with safetensors.safe_open(model_path, framework="pt") as f: | |
metadata = f.metadata() | |
if "modelspec.thumbnail" in metadata: | |
base64_data = metadata["modelspec.thumbnail"] | |
prefix, encoded = base64_data.split(",", 1) | |
image_data = base64.b64decode(encoded) | |
image = PIL.Image.open(BytesIO(image_data)) | |
return image | |
return None | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
seed: int = 0, | |
custom_width: int = 1024, | |
custom_height: int = 1024, | |
guidance_scale: float = 12.0, | |
num_inference_steps: int = 50, | |
use_lora: bool = False, | |
lora_weight: float = 1.0, | |
selected_state: str = "", | |
enable_lcm: bool = False, | |
sampler: str = "Euler a", | |
aspect_ratio_selector: str = "1024 x 1024", | |
style_selector: str = "(None)", | |
quality_selector: str = "Standard", | |
use_upscaler: bool = False, | |
upscaler_strength: float = 0.5, | |
upscale_by: float = 1.5, | |
refine_prompt: bool = False, | |
profile: gr.OAuthProfile | None = None, | |
progress=gr.Progress(track_tqdm=True), | |
) -> PIL.Image.Image: | |
generator = seed_everything(seed) | |
network = None | |
network_state = {"current_lora": None, "multiplier": None} | |
adapter_id = "Linaqruf/lcm-lora-sdxl-rank1" | |
width, height = aspect_ratio_handler( | |
aspect_ratio_selector, | |
custom_width, | |
custom_height, | |
) | |
if ENABLE_REFINER_PROMPT: | |
if refine_prompt: | |
if not prompt: | |
prompt = random.choice(["1girl, solo", "1boy, solo"]) | |
prompt = prompt_completion(prompt) | |
prompt, negative_prompt = preprocess_prompt( | |
quality_prompt, quality_selector, prompt, negative_prompt | |
) | |
prompt, negative_prompt = preprocess_prompt( | |
styles, style_selector, prompt, negative_prompt | |
) | |
if width % 8 != 0: | |
width = width - (width % 8) | |
if height % 8 != 0: | |
height = height - (height % 8) | |
if use_lora: | |
if not selected_state: | |
raise Exception("You must Select a LoRA") | |
repo_name = sdxl_loras[selected_state.index]["repo"] | |
full_path_lora = saved_names[selected_state.index] | |
weight_name = sdxl_loras[selected_state.index]["weights"] | |
lora_sd = load_file(full_path_lora) | |
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] | |
if network_state["current_lora"] != repo_name: | |
network = create_network( | |
text_encoders, | |
pipe.unet, | |
lora_sd, | |
lora_weight, | |
device, | |
) | |
network_state["current_lora"] = repo_name | |
network_state["multiplier"] = lora_weight | |
elif network_state["multiplier"] != lora_weight: | |
network = create_network( | |
text_encoders, | |
pipe.unet, | |
lora_sd, | |
lora_weight, | |
device, | |
) | |
network_state["multiplier"] = lora_weight | |
else: | |
if network: | |
network.unapply_to() | |
network = None | |
network_state = { | |
"current_lora": None, | |
"multiplier": None, | |
} | |
if enable_lcm: | |
pipe.load_lora_weights(adapter_id) | |
backup_scheduler = pipe.scheduler | |
pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler) | |
if use_upscaler: | |
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components) | |
metadata = { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"resolution": f"{width} x {height}", | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": num_inference_steps, | |
"seed": seed, | |
"sampler": sampler, | |
"enable_lcm": enable_lcm, | |
"sdxl_style": style_selector, | |
"quality_tags": quality_selector, | |
"refine_prompt": refine_prompt, | |
} | |
if use_lora: | |
metadata["use_lora"] = {"selected_lora": repo_name, "multiplier": lora_weight} | |
else: | |
metadata["use_lora"] = None | |
if use_upscaler: | |
new_width = int(width * upscale_by) | |
new_height = int(height * upscale_by) | |
metadata["use_upscaler"] = { | |
"upscale_method": "nearest-exact", | |
"upscaler_strength": upscaler_strength, | |
"upscale_by": upscale_by, | |
"new_resolution": f"{new_width} x {new_height}", | |
} | |
else: | |
metadata["use_upscaler"] = None | |
print(json.dumps(metadata, indent=4)) | |
try: | |
if use_upscaler: | |
latents = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
output_type="latent", | |
).images | |
upscaled_latents = upscale(latents, "nearest-exact", upscale_by) | |
image = upscaler_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=upscaled_latents, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
strength=upscaler_strength, | |
generator=generator, | |
output_type="pil", | |
).images[0] | |
else: | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
output_type="pil", | |
).images[0] | |
if network: | |
network.unapply_to() | |
network = None | |
if profile is not None: | |
gr_user_history.save_image( | |
label=prompt, | |
image=image, | |
profile=profile, | |
metadata=metadata, | |
) | |
return image, metadata | |
except Exception as e: | |
print(f"An error occured: {e}") | |
raise | |
finally: | |
if network: | |
network.unapply_to() | |
network = None | |
if use_lora: | |
del lora_sd, text_encoders | |
if enable_lcm: | |
pipe.unload_lora_weights() | |
if use_upscaler: | |
del upscaler_pipe | |
pipe.scheduler = backup_scheduler | |
free_memory() | |
examples = [ | |
"face focus, cute, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck", | |
"face focus, bishounen, 1boy, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck", | |
"face focus, fu xuan, 1girl, solo, yellow eyes, dress, looking at viewer, hair rings, bare shoulders, long hair, hair ornament, purple hair, bangs, forehead jewel, frills, tassel, jewelry, pink hair", | |
"face focus, bishounen, 1boy, zhongli, looking at viewer, upper body, outdoors, night", | |
"a girl with mesmerizing blue eyes peers at the viewer. Her long, white hair flows gracefully, adorned with stunning blue butterfly hair ornaments", | |
] | |
quality_prompt_list = [ | |
{ | |
"name": "(None)", | |
"prompt": "{prompt}", | |
"negative_prompt": "", | |
}, | |
{ | |
"name": "Standard", | |
"prompt": "masterpiece, best quality, {prompt}", | |
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry", | |
}, | |
{ | |
"name": "Light", | |
"prompt": "(masterpiece), best quality, expressive eyes, perfect face, {prompt}", | |
"negative_prompt": "(low quality, worst quality:1.2), 3d, watermark, signature, ugly, poorly drawn", | |
}, | |
{ | |
"name": "Heavy", | |
"prompt": "(masterpiece), (best quality), (ultra-detailed), {prompt}, illustration, disheveled hair, detailed eyes, perfect composition, moist skin, intricate details, earrings", | |
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality", | |
}, | |
] | |
sampler_list = [ | |
"DPM++ 2M Karras", | |
"DPM++ SDE Karras", | |
"DPM++ 2M SDE Karras", | |
"Euler", | |
"Euler a", | |
"DDIM", | |
] | |
aspect_ratios = [ | |
"1024 x 1024", | |
"1152 x 896", | |
"896 x 1152", | |
"1216 x 832", | |
"832 x 1216", | |
"1344 x 768", | |
"768 x 1344", | |
"1536 x 640", | |
"640 x 1536", | |
"Custom", | |
] | |
style_list = [ | |
{ | |
"name": "(None)", | |
"prompt": "{prompt}", | |
"negative_prompt": "", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", | |
"negative_prompt": "photo, photorealistic, realism, ugly", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", | |
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
] | |
thumbnail_cache = {} | |
with open("lora.toml", "r") as file: | |
data = toml.load(file) | |
sdxl_loras = [] | |
saved_names = [] | |
for item in data["data"]: | |
model_path = hf_hub_download(item["repo"], item["weights"], token=HF_TOKEN) | |
saved_names.append(model_path) # Store the path in saved_names | |
if model_path not in thumbnail_cache: | |
thumbnail_image = load_and_convert_thumbnail(model_path) | |
thumbnail_cache[model_path] = thumbnail_image | |
else: | |
thumbnail_image = thumbnail_cache[model_path] | |
sdxl_loras.append( | |
{ | |
"image": thumbnail_image, # Storing the PIL image object | |
"title": item["title"], | |
"repo": item["repo"], | |
"weights": item["weights"], | |
"multiplier": item.get("multiplier", "1.0"), | |
} | |
) | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
quality_prompt = { | |
k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list | |
} | |
# saved_names = [ | |
# hf_hub_download(item["repo"], item["weights"], token=HF_TOKEN) | |
# for item in sdxl_loras | |
# ] | |
with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo: | |
title = gr.HTML( | |
f"""<h1><span>{DESCRIPTION}</span></h1>""", | |
elem_id="title", | |
) | |
gr.Markdown( | |
f"""Gradio demo for [Linaqruf/animagine-xl-2.0](https://huggingface.co/Linaqruf/animagine-xl-2.0)""", | |
elem_id="subtitle", | |
) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
selected_state = gr.State() | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Tab("Txt2img"): | |
with gr.Group(): | |
prompt = gr.Text( | |
label="Prompt", | |
max_lines=5, | |
placeholder="Enter your prompt", | |
) | |
negative_prompt = gr.Text( | |
label="Negative Prompt", | |
max_lines=5, | |
placeholder="Enter a negative prompt", | |
) | |
with gr.Accordion(label="Quality Prompt Presets", open=False): | |
quality_selector = gr.Dropdown( | |
label="Quality Prompt Presets", | |
show_label=False, | |
interactive=True, | |
choices=list(quality_prompt.keys()), | |
value="Standard", | |
) | |
with gr.Row(): | |
enable_lcm = gr.Checkbox(label="Enable LCM", value=False) | |
use_lora = gr.Checkbox(label="Use LoRA", value=False) | |
refine_prompt = gr.Checkbox( | |
label="Refine prompt", | |
value=False, | |
visible=ENABLE_REFINER_PROMPT, | |
) | |
with gr.Group(visible=False) as lora_group: | |
selector_info = gr.Text( | |
label="Selected LoRA", | |
max_lines=1, | |
value="No LoRA selected.", | |
) | |
lora_selection = gr.Gallery( | |
value=[(item["image"], item["title"]) for item in sdxl_loras], | |
label="Animagine XL 2.0 LoRA", | |
show_label=False, | |
columns=2, | |
show_share_button=False, | |
) | |
lora_weight = gr.Slider( | |
label="Multiplier", | |
minimum=-2, | |
maximum=2, | |
step=0.05, | |
value=1, | |
) | |
with gr.Tab("Advanced Settings"): | |
with gr.Group(): | |
style_selector = gr.Radio( | |
label="Style Preset", | |
container=True, | |
interactive=True, | |
choices=list(styles.keys()), | |
value="(None)", | |
) | |
with gr.Group(): | |
aspect_ratio_selector = gr.Radio( | |
label="Aspect Ratio", | |
choices=aspect_ratios, | |
value="1024 x 1024", | |
container=True, | |
) | |
with gr.Group(): | |
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False) | |
with gr.Row() as upscaler_row: | |
upscaler_strength = gr.Slider( | |
label="Strength", | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.55, | |
visible=False, | |
) | |
upscale_by = gr.Slider( | |
label="Upscale by", | |
minimum=1, | |
maximum=1.5, | |
step=0.1, | |
value=1.5, | |
visible=False, | |
) | |
with gr.Group(visible=False) as custom_resolution: | |
with gr.Row(): | |
custom_width = gr.Slider( | |
label="Width", | |
minimum=MIN_IMAGE_SIZE, | |
maximum=MAX_IMAGE_SIZE, | |
step=8, | |
value=1024, | |
) | |
custom_height = gr.Slider( | |
label="Height", | |
minimum=MIN_IMAGE_SIZE, | |
maximum=MAX_IMAGE_SIZE, | |
step=8, | |
value=1024, | |
) | |
with gr.Group(): | |
sampler = gr.Dropdown( | |
label="Sampler", | |
choices=sampler_list, | |
interactive=True, | |
value="Euler a", | |
) | |
with gr.Group(): | |
seed = gr.Slider( | |
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Group(): | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=12.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
) | |
with gr.Tab("Past Generation"): | |
gr_user_history.render() | |
with gr.Column(scale=3): | |
with gr.Blocks(): | |
run_button = gr.Button("Generate", variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion(label="Generation Parameters", open=False): | |
gr_metadata = gr.JSON(label="Metadata", show_label=False) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, gr_metadata], | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
lora_selection.select( | |
update_selection, | |
outputs=[ | |
selector_info, | |
selected_state, | |
lora_weight, | |
], | |
queue=False, | |
show_progress=False, | |
) | |
enable_lcm.change( | |
update_lcm_parameter, | |
inputs=enable_lcm, | |
outputs=[ | |
guidance_scale, | |
num_inference_steps, | |
sampler, | |
sampler, | |
], | |
queue=False, | |
api_name=False, | |
) | |
use_lora.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_lora, | |
outputs=lora_group, | |
queue=False, | |
api_name=False, | |
) | |
use_upscaler.change( | |
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)], | |
inputs=use_upscaler, | |
outputs=[upscaler_strength, upscale_by], | |
queue=False, | |
api_name=False, | |
) | |
aspect_ratio_selector.change( | |
fn=lambda x: gr.update(visible=x == "Custom"), | |
inputs=aspect_ratio_selector, | |
outputs=custom_resolution, | |
queue=False, | |
api_name=False, | |
) | |
inputs = [ | |
prompt, | |
negative_prompt, | |
seed, | |
custom_width, | |
custom_height, | |
guidance_scale, | |
num_inference_steps, | |
use_lora, | |
lora_weight, | |
selected_state, | |
enable_lcm, | |
sampler, | |
aspect_ratio_selector, | |
style_selector, | |
quality_selector, | |
use_upscaler, | |
upscaler_strength, | |
upscale_by, | |
refine_prompt, | |
] | |
prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name="run", | |
) | |
negative_prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
run_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=[result, gr_metadata], | |
api_name=False, | |
) | |
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB) | |