Spaces:
Runtime error
Runtime error
# Ultralytics YOLO π, AGPL-3.0 license | |
import torch | |
from ultralytics.engine.predictor import BasePredictor | |
from ultralytics.engine.results import Results | |
from ultralytics.utils import ops | |
from ultralytics.utils.ops import xyxy2xywh | |
class NASPredictor(BasePredictor): | |
def postprocess(self, preds_in, img, orig_imgs): | |
"""Postprocesses predictions and returns a list of Results objects.""" | |
# Cat boxes and class scores | |
boxes = xyxy2xywh(preds_in[0][0]) | |
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) | |
preds = ops.non_max_suppression(preds, | |
self.args.conf, | |
self.args.iou, | |
agnostic=self.args.agnostic_nms, | |
max_det=self.args.max_det, | |
classes=self.args.classes) | |
results = [] | |
for i, pred in enumerate(preds): | |
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs | |
if not isinstance(orig_imgs, torch.Tensor): | |
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) | |
path = self.batch[0] | |
img_path = path[i] if isinstance(path, list) else path | |
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) | |
return results | |