Spaces:
Running
Running
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
""" | |
Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit | |
Format | `format=argument` | Model | |
--- | --- | --- | |
PyTorch | - | yolov8n.pt | |
TorchScript | `torchscript` | yolov8n.torchscript | |
ONNX | `onnx` | yolov8n.onnx | |
OpenVINO | `openvino` | yolov8n_openvino_model/ | |
TensorRT | `engine` | yolov8n.engine | |
CoreML | `coreml` | yolov8n.mlmodel | |
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ | |
TensorFlow GraphDef | `pb` | yolov8n.pb | |
TensorFlow Lite | `tflite` | yolov8n.tflite | |
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite | |
TensorFlow.js | `tfjs` | yolov8n_web_model/ | |
PaddlePaddle | `paddle` | yolov8n_paddle_model/ | |
ncnn | `ncnn` | yolov8n_ncnn_model/ | |
Requirements: | |
$ pip install "ultralytics[export]" | |
Python: | |
from ultralytics import YOLO | |
model = YOLO('yolov8n.pt') | |
results = model.export(format='onnx') | |
CLI: | |
$ yolo mode=export model=yolov8n.pt format=onnx | |
Inference: | |
$ yolo predict model=yolov8n.pt # PyTorch | |
yolov8n.torchscript # TorchScript | |
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True | |
yolov8n_openvino_model # OpenVINO | |
yolov8n.engine # TensorRT | |
yolov8n.mlmodel # CoreML (macOS-only) | |
yolov8n_saved_model # TensorFlow SavedModel | |
yolov8n.pb # TensorFlow GraphDef | |
yolov8n.tflite # TensorFlow Lite | |
yolov8n_edgetpu.tflite # TensorFlow Edge TPU | |
yolov8n_paddle_model # PaddlePaddle | |
TensorFlow.js: | |
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example | |
$ npm install | |
$ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model | |
$ npm start | |
""" | |
import json | |
import os | |
import shutil | |
import subprocess | |
import time | |
import warnings | |
from copy import deepcopy | |
from datetime import datetime | |
from pathlib import Path | |
import torch | |
from ultralytics.cfg import get_cfg | |
from ultralytics.nn.autobackend import check_class_names | |
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder | |
from ultralytics.nn.tasks import DetectionModel, SegmentationModel | |
from ultralytics.utils import (ARM64, DEFAULT_CFG, LINUX, LOGGER, MACOS, ROOT, WINDOWS, __version__, callbacks, | |
colorstr, get_default_args, yaml_save) | |
from ultralytics.utils.checks import check_imgsz, check_requirements, check_version | |
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets | |
from ultralytics.utils.files import file_size, spaces_in_path | |
from ultralytics.utils.ops import Profile | |
from ultralytics.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode | |
def export_formats(): | |
"""YOLOv8 export formats.""" | |
import pandas | |
x = [ | |
['PyTorch', '-', '.pt', True, True], | |
['TorchScript', 'torchscript', '.torchscript', True, True], | |
['ONNX', 'onnx', '.onnx', True, True], | |
['OpenVINO', 'openvino', '_openvino_model', True, False], | |
['TensorRT', 'engine', '.engine', False, True], | |
['CoreML', 'coreml', '.mlmodel', True, False], | |
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], | |
['TensorFlow GraphDef', 'pb', '.pb', True, True], | |
['TensorFlow Lite', 'tflite', '.tflite', True, False], | |
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', True, False], | |
['TensorFlow.js', 'tfjs', '_web_model', True, False], | |
['PaddlePaddle', 'paddle', '_paddle_model', True, True], | |
['ncnn', 'ncnn', '_ncnn_model', True, True], ] | |
return pandas.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) | |
def gd_outputs(gd): | |
"""TensorFlow GraphDef model output node names.""" | |
name_list, input_list = [], [] | |
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef | |
name_list.append(node.name) | |
input_list.extend(node.input) | |
return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp')) | |
def try_export(inner_func): | |
"""YOLOv8 export decorator, i..e @try_export.""" | |
inner_args = get_default_args(inner_func) | |
def outer_func(*args, **kwargs): | |
"""Export a model.""" | |
prefix = inner_args['prefix'] | |
try: | |
with Profile() as dt: | |
f, model = inner_func(*args, **kwargs) | |
LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as '{f}' ({file_size(f):.1f} MB)") | |
return f, model | |
except Exception as e: | |
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}') | |
raise e | |
return outer_func | |
class Exporter: | |
""" | |
A class for exporting a model. | |
Attributes: | |
args (SimpleNamespace): Configuration for the exporter. | |
save_dir (Path): Directory to save results. | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
""" | |
Initializes the Exporter class. | |
Args: | |
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. | |
overrides (dict, optional): Configuration overrides. Defaults to None. | |
_callbacks (list, optional): List of callback functions. Defaults to None. | |
""" | |
self.args = get_cfg(cfg, overrides) | |
self.callbacks = _callbacks or callbacks.get_default_callbacks() | |
callbacks.add_integration_callbacks(self) | |
def __call__(self, model=None): | |
"""Returns list of exported files/dirs after running callbacks.""" | |
self.run_callbacks('on_export_start') | |
t = time.time() | |
format = self.args.format.lower() # to lowercase | |
if format in ('tensorrt', 'trt'): # engine aliases | |
format = 'engine' | |
fmts = tuple(export_formats()['Argument'][1:]) # available export formats | |
flags = [x == format for x in fmts] | |
if sum(flags) != 1: | |
raise ValueError(f"Invalid export format='{format}'. Valid formats are {fmts}") | |
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags # export booleans | |
# Load PyTorch model | |
self.device = select_device('cpu' if self.args.device is None else self.args.device) | |
# Checks | |
model.names = check_class_names(model.names) | |
if self.args.half and onnx and self.device.type == 'cpu': | |
LOGGER.warning('WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0') | |
self.args.half = False | |
assert not self.args.dynamic, 'half=True not compatible with dynamic=True, i.e. use only one.' | |
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size | |
if self.args.optimize: | |
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False" | |
assert self.device.type == 'cpu', "optimize=True not compatible with cuda devices, i.e. use device='cpu'" | |
if edgetpu and not LINUX: | |
raise SystemError('Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler/') | |
# Input | |
im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device) | |
file = Path( | |
getattr(model, 'pt_path', None) or getattr(model, 'yaml_file', None) or model.yaml.get('yaml_file', '')) | |
if file.suffix in ('.yaml', '.yml'): | |
file = Path(file.name) | |
# Update model | |
model = deepcopy(model).to(self.device) | |
for p in model.parameters(): | |
p.requires_grad = False | |
model.eval() | |
model.float() | |
model = model.fuse() | |
for k, m in model.named_modules(): | |
if isinstance(m, (Detect, RTDETRDecoder)): # Segment and Pose use Detect base class | |
m.dynamic = self.args.dynamic | |
m.export = True | |
m.format = self.args.format | |
elif isinstance(m, C2f) and not any((saved_model, pb, tflite, edgetpu, tfjs)): | |
# EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph | |
m.forward = m.forward_split | |
y = None | |
for _ in range(2): | |
y = model(im) # dry runs | |
if self.args.half and (engine or onnx) and self.device.type != 'cpu': | |
im, model = im.half(), model.half() # to FP16 | |
# Filter warnings | |
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning | |
warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant missing ONNX warning | |
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning | |
# Assign | |
self.im = im | |
self.model = model | |
self.file = file | |
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else \ | |
tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y) | |
self.pretty_name = Path(self.model.yaml.get('yaml_file', self.file)).stem.replace('yolo', 'YOLO') | |
trained_on = f'trained on {Path(self.args.data).name}' if self.args.data else '(untrained)' | |
description = f'Ultralytics {self.pretty_name} model {trained_on}' | |
self.metadata = { | |
'description': description, | |
'author': 'Ultralytics', | |
'license': 'AGPL-3.0 https://ultralytics.com/license', | |
'date': datetime.now().isoformat(), | |
'version': __version__, | |
'stride': int(max(model.stride)), | |
'task': model.task, | |
'batch': self.args.batch, | |
'imgsz': self.imgsz, | |
'names': model.names} # model metadata | |
if model.task == 'pose': | |
self.metadata['kpt_shape'] = model.model[-1].kpt_shape | |
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and " | |
f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)') | |
# Exports | |
f = [''] * len(fmts) # exported filenames | |
if jit or ncnn: # TorchScript | |
f[0], _ = self.export_torchscript() | |
if engine: # TensorRT required before ONNX | |
f[1], _ = self.export_engine() | |
if onnx or xml: # OpenVINO requires ONNX | |
f[2], _ = self.export_onnx() | |
if xml: # OpenVINO | |
f[3], _ = self.export_openvino() | |
if coreml: # CoreML | |
f[4], _ = self.export_coreml() | |
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats | |
self.args.int8 |= edgetpu | |
f[5], s_model = self.export_saved_model() | |
if pb or tfjs: # pb prerequisite to tfjs | |
f[6], _ = self.export_pb(s_model) | |
if tflite: | |
f[7], _ = self.export_tflite(s_model, nms=False, agnostic_nms=self.args.agnostic_nms) | |
if edgetpu: | |
f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f'{self.file.stem}_full_integer_quant.tflite') | |
if tfjs: | |
f[9], _ = self.export_tfjs() | |
if paddle: # PaddlePaddle | |
f[10], _ = self.export_paddle() | |
if ncnn: # ncnn | |
f[11], _ = self.export_ncnn() | |
# Finish | |
f = [str(x) for x in f if x] # filter out '' and None | |
if any(f): | |
f = str(Path(f[-1])) | |
square = self.imgsz[0] == self.imgsz[1] | |
s = '' if square else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not " \ | |
f"work. Use export 'imgsz={max(self.imgsz)}' if val is required." | |
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(' ', '') | |
data = f'data={self.args.data}' if model.task == 'segment' and format == 'pb' else '' | |
LOGGER.info( | |
f'\nExport complete ({time.time() - t:.1f}s)' | |
f"\nResults saved to {colorstr('bold', file.parent.resolve())}" | |
f'\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {data}' | |
f'\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={self.args.data} {s}' | |
f'\nVisualize: https://netron.app') | |
self.run_callbacks('on_export_end') | |
return f # return list of exported files/dirs | |
def export_torchscript(self, prefix=colorstr('TorchScript:')): | |
"""YOLOv8 TorchScript model export.""" | |
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') | |
f = self.file.with_suffix('.torchscript') | |
ts = torch.jit.trace(self.model, self.im, strict=False) | |
extra_files = {'config.txt': json.dumps(self.metadata)} # torch._C.ExtraFilesMap() | |
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html | |
LOGGER.info(f'{prefix} optimizing for mobile...') | |
from torch.utils.mobile_optimizer import optimize_for_mobile | |
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) | |
else: | |
ts.save(str(f), _extra_files=extra_files) | |
return f, None | |
def export_onnx(self, prefix=colorstr('ONNX:')): | |
"""YOLOv8 ONNX export.""" | |
requirements = ['onnx>=1.12.0'] | |
if self.args.simplify: | |
requirements += ['onnxsim>=0.4.17', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'] | |
check_requirements(requirements) | |
import onnx # noqa | |
opset_version = self.args.opset or get_latest_opset() | |
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...') | |
f = str(self.file.with_suffix('.onnx')) | |
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0'] | |
dynamic = self.args.dynamic | |
if dynamic: | |
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640) | |
if isinstance(self.model, SegmentationModel): | |
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400) | |
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160) | |
elif isinstance(self.model, DetectionModel): | |
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400) | |
torch.onnx.export( | |
self.model.cpu() if dynamic else self.model, # --dynamic only compatible with cpu | |
self.im.cpu() if dynamic else self.im, | |
f, | |
verbose=False, | |
opset_version=opset_version, | |
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False | |
input_names=['images'], | |
output_names=output_names, | |
dynamic_axes=dynamic or None) | |
# Checks | |
model_onnx = onnx.load(f) # load onnx model | |
# onnx.checker.check_model(model_onnx) # check onnx model | |
# Simplify | |
if self.args.simplify: | |
try: | |
import onnxsim | |
LOGGER.info(f'{prefix} simplifying with onnxsim {onnxsim.__version__}...') | |
# subprocess.run(f'onnxsim "{f}" "{f}"', shell=True) | |
model_onnx, check = onnxsim.simplify(model_onnx) | |
assert check, 'Simplified ONNX model could not be validated' | |
except Exception as e: | |
LOGGER.info(f'{prefix} simplifier failure: {e}') | |
# Metadata | |
for k, v in self.metadata.items(): | |
meta = model_onnx.metadata_props.add() | |
meta.key, meta.value = k, str(v) | |
onnx.save(model_onnx, f) | |
return f, model_onnx | |
def export_openvino(self, prefix=colorstr('OpenVINO:')): | |
"""YOLOv8 OpenVINO export.""" | |
check_requirements('openvino-dev>=2023.0') # requires openvino-dev: https://pypi.org/project/openvino-dev/ | |
import openvino.runtime as ov # noqa | |
from openvino.tools import mo # noqa | |
LOGGER.info(f'\n{prefix} starting export with openvino {ov.__version__}...') | |
f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}') | |
f_onnx = self.file.with_suffix('.onnx') | |
f_ov = str(Path(f) / self.file.with_suffix('.xml').name) | |
ov_model = mo.convert_model(f_onnx, | |
model_name=self.pretty_name, | |
framework='onnx', | |
compress_to_fp16=self.args.half) # export | |
# Set RT info | |
ov_model.set_rt_info('YOLOv8', ['model_info', 'model_type']) | |
ov_model.set_rt_info(True, ['model_info', 'reverse_input_channels']) | |
ov_model.set_rt_info(114, ['model_info', 'pad_value']) | |
ov_model.set_rt_info([255.0], ['model_info', 'scale_values']) | |
ov_model.set_rt_info(self.args.iou, ['model_info', 'iou_threshold']) | |
ov_model.set_rt_info([v.replace(' ', '_') for k, v in sorted(self.model.names.items())], | |
['model_info', 'labels']) | |
if self.model.task != 'classify': | |
ov_model.set_rt_info('fit_to_window_letterbox', ['model_info', 'resize_type']) | |
ov.serialize(ov_model, f_ov) # save | |
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml | |
return f, None | |
def export_paddle(self, prefix=colorstr('PaddlePaddle:')): | |
"""YOLOv8 Paddle export.""" | |
check_requirements(('paddlepaddle', 'x2paddle')) | |
import x2paddle # noqa | |
from x2paddle.convert import pytorch2paddle # noqa | |
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') | |
f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}') | |
pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export | |
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml | |
return f, None | |
def export_ncnn(self, prefix=colorstr('ncnn:')): | |
""" | |
YOLOv8 ncnn export using PNNX https://github.com/pnnx/pnnx. | |
""" | |
check_requirements('git+https://github.com/Tencent/ncnn.git' if ARM64 else 'ncnn') # requires ncnn | |
import ncnn # noqa | |
LOGGER.info(f'\n{prefix} starting export with ncnn {ncnn.__version__}...') | |
f = Path(str(self.file).replace(self.file.suffix, f'_ncnn_model{os.sep}')) | |
f_ts = self.file.with_suffix('.torchscript') | |
pnnx_filename = 'pnnx.exe' if WINDOWS else 'pnnx' | |
if Path(pnnx_filename).is_file(): | |
pnnx = pnnx_filename | |
elif (ROOT / pnnx_filename).is_file(): | |
pnnx = ROOT / pnnx_filename | |
else: | |
LOGGER.warning( | |
f'{prefix} WARNING ⚠️ PNNX not found. Attempting to download binary file from ' | |
'https://github.com/pnnx/pnnx/.\nNote PNNX Binary file must be placed in current working directory ' | |
f'or in {ROOT}. See PNNX repo for full installation instructions.') | |
_, assets = get_github_assets(repo='pnnx/pnnx', retry=True) | |
asset = [x for x in assets if ('macos' if MACOS else 'ubuntu' if LINUX else 'windows') in x][0] | |
attempt_download_asset(asset, repo='pnnx/pnnx', release='latest') | |
unzip_dir = Path(asset).with_suffix('') | |
pnnx = ROOT / pnnx_filename # new location | |
(unzip_dir / pnnx_filename).rename(pnnx) # move binary to ROOT | |
shutil.rmtree(unzip_dir) # delete unzip dir | |
Path(asset).unlink() # delete zip | |
pnnx.chmod(0o777) # set read, write, and execute permissions for everyone | |
use_ncnn = True | |
ncnn_args = [ | |
f'ncnnparam={f / "model.ncnn.param"}', | |
f'ncnnbin={f / "model.ncnn.bin"}', | |
f'ncnnpy={f / "model_ncnn.py"}', ] if use_ncnn else [] | |
use_pnnx = False | |
pnnx_args = [ | |
f'pnnxparam={f / "model.pnnx.param"}', | |
f'pnnxbin={f / "model.pnnx.bin"}', | |
f'pnnxpy={f / "model_pnnx.py"}', | |
f'pnnxonnx={f / "model.pnnx.onnx"}', ] if use_pnnx else [] | |
cmd = [ | |
str(pnnx), | |
str(f_ts), | |
*ncnn_args, | |
*pnnx_args, | |
f'fp16={int(self.args.half)}', | |
f'device={self.device.type}', | |
f'inputshape="{[self.args.batch, 3, *self.imgsz]}"', ] | |
f.mkdir(exist_ok=True) # make ncnn_model directory | |
LOGGER.info(f"{prefix} running '{' '.join(cmd)}'") | |
subprocess.run(cmd, check=True) | |
for f_debug in 'debug.bin', 'debug.param', 'debug2.bin', 'debug2.param': # remove debug files | |
Path(f_debug).unlink(missing_ok=True) | |
yaml_save(f / 'metadata.yaml', self.metadata) # add metadata.yaml | |
return str(f), None | |
def export_coreml(self, prefix=colorstr('CoreML:')): | |
"""YOLOv8 CoreML export.""" | |
check_requirements('coremltools>=6.0,<=6.2') | |
import coremltools as ct # noqa | |
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') | |
f = self.file.with_suffix('.mlmodel') | |
bias = [0.0, 0.0, 0.0] | |
scale = 1 / 255 | |
classifier_config = None | |
if self.model.task == 'classify': | |
classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None | |
model = self.model | |
elif self.model.task == 'detect': | |
model = iOSDetectModel(self.model, self.im) if self.args.nms else self.model | |
else: | |
# TODO CoreML Segment and Pose model pipelining | |
model = self.model | |
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model | |
ct_model = ct.convert(ts, | |
inputs=[ct.ImageType('image', shape=self.im.shape, scale=scale, bias=bias)], | |
classifier_config=classifier_config) | |
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None) | |
if bits < 32: | |
if 'kmeans' in mode: | |
check_requirements('scikit-learn') # scikit-learn package required for k-means quantization | |
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) | |
if self.args.nms and self.model.task == 'detect': | |
ct_model = self._pipeline_coreml(ct_model) | |
m = self.metadata # metadata dict | |
ct_model.short_description = m.pop('description') | |
ct_model.author = m.pop('author') | |
ct_model.license = m.pop('license') | |
ct_model.version = m.pop('version') | |
ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()}) | |
ct_model.save(str(f)) | |
return f, ct_model | |
def export_engine(self, prefix=colorstr('TensorRT:')): | |
"""YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt.""" | |
assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'" | |
try: | |
import tensorrt as trt # noqa | |
except ImportError: | |
if LINUX: | |
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') | |
import tensorrt as trt # noqa | |
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 | |
self.args.simplify = True | |
f_onnx, _ = self.export_onnx() | |
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') | |
assert Path(f_onnx).exists(), f'failed to export ONNX file: {f_onnx}' | |
f = self.file.with_suffix('.engine') # TensorRT engine file | |
logger = trt.Logger(trt.Logger.INFO) | |
if self.args.verbose: | |
logger.min_severity = trt.Logger.Severity.VERBOSE | |
builder = trt.Builder(logger) | |
config = builder.create_builder_config() | |
config.max_workspace_size = self.args.workspace * 1 << 30 | |
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice | |
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | |
network = builder.create_network(flag) | |
parser = trt.OnnxParser(network, logger) | |
if not parser.parse_from_file(f_onnx): | |
raise RuntimeError(f'failed to load ONNX file: {f_onnx}') | |
inputs = [network.get_input(i) for i in range(network.num_inputs)] | |
outputs = [network.get_output(i) for i in range(network.num_outputs)] | |
for inp in inputs: | |
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') | |
for out in outputs: | |
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') | |
if self.args.dynamic: | |
shape = self.im.shape | |
if shape[0] <= 1: | |
LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument') | |
profile = builder.create_optimization_profile() | |
for inp in inputs: | |
profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape) | |
config.add_optimization_profile(profile) | |
LOGGER.info( | |
f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}') | |
if builder.platform_has_fast_fp16 and self.args.half: | |
config.set_flag(trt.BuilderFlag.FP16) | |
# Write file | |
with builder.build_engine(network, config) as engine, open(f, 'wb') as t: | |
# Metadata | |
meta = json.dumps(self.metadata) | |
t.write(len(meta).to_bytes(4, byteorder='little', signed=True)) | |
t.write(meta.encode()) | |
# Model | |
t.write(engine.serialize()) | |
return f, None | |
def export_saved_model(self, prefix=colorstr('TensorFlow SavedModel:')): | |
"""YOLOv8 TensorFlow SavedModel export.""" | |
try: | |
import tensorflow as tf # noqa | |
except ImportError: | |
cuda = torch.cuda.is_available() | |
check_requirements(f"tensorflow{'-macos' if MACOS else '-aarch64' if ARM64 else '' if cuda else '-cpu'}") | |
import tensorflow as tf # noqa | |
check_requirements(('onnx', 'onnx2tf>=1.9.1', 'sng4onnx>=1.0.1', 'onnxsim>=0.4.17', 'onnx_graphsurgeon>=0.3.26', | |
'tflite_support', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'), | |
cmds='--extra-index-url https://pypi.ngc.nvidia.com') | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
f = Path(str(self.file).replace(self.file.suffix, '_saved_model')) | |
if f.is_dir(): | |
import shutil | |
shutil.rmtree(f) # delete output folder | |
# Export to ONNX | |
self.args.simplify = True | |
f_onnx, _ = self.export_onnx() | |
# Export to TF | |
tmp_file = f / 'tmp_tflite_int8_calibration_images.npy' # int8 calibration images file | |
if self.args.int8: | |
if self.args.data: | |
import numpy as np | |
from ultralytics.data.dataset import YOLODataset | |
from ultralytics.data.utils import check_det_dataset | |
# Generate calibration data for integer quantization | |
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'") | |
dataset = YOLODataset(check_det_dataset(self.args.data)['val'], imgsz=self.imgsz[0], augment=False) | |
images = [] | |
n_images = 100 # maximum number of images | |
for n, batch in enumerate(dataset): | |
if n >= n_images: | |
break | |
im = batch['img'].permute(1, 2, 0)[None] # list to nparray, CHW to BHWC, | |
images.append(im) | |
f.mkdir() | |
images = torch.cat(images, 0).float() | |
# mean = images.view(-1, 3).mean(0) # imagenet mean [123.675, 116.28, 103.53] | |
# std = images.view(-1, 3).std(0) # imagenet std [58.395, 57.12, 57.375] | |
np.save(str(tmp_file), images.numpy()) # BHWC | |
int8 = f'-oiqt -qt per-tensor -cind images "{tmp_file}" "[[[[0, 0, 0]]]]" "[[[[255, 255, 255]]]]"' | |
else: | |
int8 = '-oiqt -qt per-tensor' | |
else: | |
int8 = '' | |
cmd = f'onnx2tf -i "{f_onnx}" -o "{f}" -nuo --non_verbose {int8}'.strip() | |
LOGGER.info(f"{prefix} running '{cmd}'") | |
subprocess.run(cmd, shell=True) | |
yaml_save(f / 'metadata.yaml', self.metadata) # add metadata.yaml | |
# Remove/rename TFLite models | |
if self.args.int8: | |
tmp_file.unlink(missing_ok=True) | |
for file in f.rglob('*_dynamic_range_quant.tflite'): | |
file.rename(file.with_name(file.stem.replace('_dynamic_range_quant', '_int8') + file.suffix)) | |
for file in f.rglob('*_integer_quant_with_int16_act.tflite'): | |
file.unlink() # delete extra fp16 activation TFLite files | |
# Add TFLite metadata | |
for file in f.rglob('*.tflite'): | |
f.unlink() if 'quant_with_int16_act.tflite' in str(f) else self._add_tflite_metadata(file) | |
# Load saved_model | |
keras_model = tf.saved_model.load(f, tags=None, options=None) | |
return str(f), keras_model | |
def export_pb(self, keras_model, prefix=colorstr('TensorFlow GraphDef:')): | |
"""YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow.""" | |
import tensorflow as tf # noqa | |
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
f = self.file.with_suffix('.pb') | |
m = tf.function(lambda x: keras_model(x)) # full model | |
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) | |
frozen_func = convert_variables_to_constants_v2(m) | |
frozen_func.graph.as_graph_def() | |
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) | |
return f, None | |
def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): | |
"""YOLOv8 TensorFlow Lite export.""" | |
import tensorflow as tf # noqa | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
saved_model = Path(str(self.file).replace(self.file.suffix, '_saved_model')) | |
if self.args.int8: | |
f = saved_model / f'{self.file.stem}_int8.tflite' # fp32 in/out | |
elif self.args.half: | |
f = saved_model / f'{self.file.stem}_float16.tflite' # fp32 in/out | |
else: | |
f = saved_model / f'{self.file.stem}_float32.tflite' | |
return str(f), None | |
def export_edgetpu(self, tflite_model='', prefix=colorstr('Edge TPU:')): | |
"""YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/.""" | |
LOGGER.warning(f'{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185') | |
cmd = 'edgetpu_compiler --version' | |
help_url = 'https://coral.ai/docs/edgetpu/compiler/' | |
assert LINUX, f'export only supported on Linux. See {help_url}' | |
if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0: | |
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') | |
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system | |
for c in ( | |
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', | |
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', | |
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): | |
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) | |
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] | |
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') | |
f = str(tflite_model).replace('.tflite', '_edgetpu.tflite') # Edge TPU model | |
cmd = f'edgetpu_compiler -s -d -k 10 --out_dir "{Path(f).parent}" "{tflite_model}"' | |
LOGGER.info(f"{prefix} running '{cmd}'") | |
subprocess.run(cmd, shell=True) | |
self._add_tflite_metadata(f) | |
return f, None | |
def export_tfjs(self, prefix=colorstr('TensorFlow.js:')): | |
"""YOLOv8 TensorFlow.js export.""" | |
check_requirements('tensorflowjs') | |
import tensorflow as tf | |
import tensorflowjs as tfjs # noqa | |
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') | |
f = str(self.file).replace(self.file.suffix, '_web_model') # js dir | |
f_pb = str(self.file.with_suffix('.pb')) # *.pb path | |
gd = tf.Graph().as_graph_def() # TF GraphDef | |
with open(f_pb, 'rb') as file: | |
gd.ParseFromString(file.read()) | |
outputs = ','.join(gd_outputs(gd)) | |
LOGGER.info(f'\n{prefix} output node names: {outputs}') | |
with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path | |
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model --output_node_names={outputs} "{fpb_}" "{f_}"' | |
LOGGER.info(f"{prefix} running '{cmd}'") | |
subprocess.run(cmd, shell=True) | |
if ' ' in str(f): | |
LOGGER.warning(f"{prefix} WARNING ⚠️ your model may not work correctly with spaces in path '{f}'.") | |
# f_json = Path(f) / 'model.json' # *.json path | |
# with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order | |
# subst = re.sub( | |
# r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' | |
# r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
# r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
# r'"Identity.?.?": {"name": "Identity.?.?"}}}', | |
# r'{"outputs": {"Identity": {"name": "Identity"}, ' | |
# r'"Identity_1": {"name": "Identity_1"}, ' | |
# r'"Identity_2": {"name": "Identity_2"}, ' | |
# r'"Identity_3": {"name": "Identity_3"}}}', | |
# f_json.read_text(), | |
# ) | |
# j.write(subst) | |
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml | |
return f, None | |
def _add_tflite_metadata(self, file): | |
"""Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata.""" | |
from tflite_support import flatbuffers # noqa | |
from tflite_support import metadata as _metadata # noqa | |
from tflite_support import metadata_schema_py_generated as _metadata_fb # noqa | |
# Create model info | |
model_meta = _metadata_fb.ModelMetadataT() | |
model_meta.name = self.metadata['description'] | |
model_meta.version = self.metadata['version'] | |
model_meta.author = self.metadata['author'] | |
model_meta.license = self.metadata['license'] | |
# Label file | |
tmp_file = Path(file).parent / 'temp_meta.txt' | |
with open(tmp_file, 'w') as f: | |
f.write(str(self.metadata)) | |
label_file = _metadata_fb.AssociatedFileT() | |
label_file.name = tmp_file.name | |
label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS | |
# Create input info | |
input_meta = _metadata_fb.TensorMetadataT() | |
input_meta.name = 'image' | |
input_meta.description = 'Input image to be detected.' | |
input_meta.content = _metadata_fb.ContentT() | |
input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT() | |
input_meta.content.contentProperties.colorSpace = _metadata_fb.ColorSpaceType.RGB | |
input_meta.content.contentPropertiesType = _metadata_fb.ContentProperties.ImageProperties | |
# Create output info | |
output1 = _metadata_fb.TensorMetadataT() | |
output1.name = 'output' | |
output1.description = 'Coordinates of detected objects, class labels, and confidence score' | |
output1.associatedFiles = [label_file] | |
if self.model.task == 'segment': | |
output2 = _metadata_fb.TensorMetadataT() | |
output2.name = 'output' | |
output2.description = 'Mask protos' | |
output2.associatedFiles = [label_file] | |
# Create subgraph info | |
subgraph = _metadata_fb.SubGraphMetadataT() | |
subgraph.inputTensorMetadata = [input_meta] | |
subgraph.outputTensorMetadata = [output1, output2] if self.model.task == 'segment' else [output1] | |
model_meta.subgraphMetadata = [subgraph] | |
b = flatbuffers.Builder(0) | |
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) | |
metadata_buf = b.Output() | |
populator = _metadata.MetadataPopulator.with_model_file(str(file)) | |
populator.load_metadata_buffer(metadata_buf) | |
populator.load_associated_files([str(tmp_file)]) | |
populator.populate() | |
tmp_file.unlink() | |
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')): | |
"""YOLOv8 CoreML pipeline.""" | |
import coremltools as ct # noqa | |
LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...') | |
batch_size, ch, h, w = list(self.im.shape) # BCHW | |
# Output shapes | |
spec = model.get_spec() | |
out0, out1 = iter(spec.description.output) | |
if MACOS: | |
from PIL import Image | |
img = Image.new('RGB', (w, h)) # img(192 width, 320 height) | |
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection | |
out = model.predict({'image': img}) | |
out0_shape = out[out0.name].shape | |
out1_shape = out[out1.name].shape | |
else: # linux and windows can not run model.predict(), get sizes from pytorch output y | |
out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80) | |
out1_shape = self.output_shape[2], 4 # (3780, 4) | |
# Checks | |
names = self.metadata['names'] | |
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height | |
na, nc = out0_shape | |
# na, nc = out0.type.multiArrayType.shape # number anchors, classes | |
assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check | |
# Define output shapes (missing) | |
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80) | |
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4) | |
# spec.neuralNetwork.preprocessing[0].featureName = '0' | |
# Flexible input shapes | |
# from coremltools.models.neural_network import flexible_shape_utils | |
# s = [] # shapes | |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192)) | |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width) | |
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s) | |
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges | |
# r.add_height_range((192, 640)) | |
# r.add_width_range((192, 640)) | |
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r) | |
# print(spec.description) | |
# Model from spec | |
model = ct.models.MLModel(spec) | |
# 3. Create NMS protobuf | |
nms_spec = ct.proto.Model_pb2.Model() | |
nms_spec.specificationVersion = 5 | |
for i in range(2): | |
decoder_output = model._spec.description.output[i].SerializeToString() | |
nms_spec.description.input.add() | |
nms_spec.description.input[i].ParseFromString(decoder_output) | |
nms_spec.description.output.add() | |
nms_spec.description.output[i].ParseFromString(decoder_output) | |
nms_spec.description.output[0].name = 'confidence' | |
nms_spec.description.output[1].name = 'coordinates' | |
output_sizes = [nc, 4] | |
for i in range(2): | |
ma_type = nms_spec.description.output[i].type.multiArrayType | |
ma_type.shapeRange.sizeRanges.add() | |
ma_type.shapeRange.sizeRanges[0].lowerBound = 0 | |
ma_type.shapeRange.sizeRanges[0].upperBound = -1 | |
ma_type.shapeRange.sizeRanges.add() | |
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] | |
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] | |
del ma_type.shape[:] | |
nms = nms_spec.nonMaximumSuppression | |
nms.confidenceInputFeatureName = out0.name # 1x507x80 | |
nms.coordinatesInputFeatureName = out1.name # 1x507x4 | |
nms.confidenceOutputFeatureName = 'confidence' | |
nms.coordinatesOutputFeatureName = 'coordinates' | |
nms.iouThresholdInputFeatureName = 'iouThreshold' | |
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold' | |
nms.iouThreshold = 0.45 | |
nms.confidenceThreshold = 0.25 | |
nms.pickTop.perClass = True | |
nms.stringClassLabels.vector.extend(names.values()) | |
nms_model = ct.models.MLModel(nms_spec) | |
# 4. Pipeline models together | |
pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)), | |
('iouThreshold', ct.models.datatypes.Double()), | |
('confidenceThreshold', ct.models.datatypes.Double())], | |
output_features=['confidence', 'coordinates']) | |
pipeline.add_model(model) | |
pipeline.add_model(nms_model) | |
# Correct datatypes | |
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) | |
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) | |
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) | |
# Update metadata | |
pipeline.spec.specificationVersion = 5 | |
pipeline.spec.description.metadata.userDefined.update({ | |
'IoU threshold': str(nms.iouThreshold), | |
'Confidence threshold': str(nms.confidenceThreshold)}) | |
# Save the model | |
model = ct.models.MLModel(pipeline.spec) | |
model.input_description['image'] = 'Input image' | |
model.input_description['iouThreshold'] = f'(optional) IOU threshold override (default: {nms.iouThreshold})' | |
model.input_description['confidenceThreshold'] = \ | |
f'(optional) Confidence threshold override (default: {nms.confidenceThreshold})' | |
model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")' | |
model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)' | |
LOGGER.info(f'{prefix} pipeline success') | |
return model | |
def add_callback(self, event: str, callback): | |
""" | |
Appends the given callback. | |
""" | |
self.callbacks[event].append(callback) | |
def run_callbacks(self, event: str): | |
"""Execute all callbacks for a given event.""" | |
for callback in self.callbacks.get(event, []): | |
callback(self) | |
class iOSDetectModel(torch.nn.Module): | |
"""Wrap an Ultralytics YOLO model for iOS export.""" | |
def __init__(self, model, im): | |
"""Initialize the iOSDetectModel class with a YOLO model and example image.""" | |
super().__init__() | |
b, c, h, w = im.shape # batch, channel, height, width | |
self.model = model | |
self.nc = len(model.names) # number of classes | |
if w == h: | |
self.normalize = 1.0 / w # scalar | |
else: | |
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller) | |
def forward(self, x): | |
"""Normalize predictions of object detection model with input size-dependent factors.""" | |
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1) | |
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4) | |
def export(cfg=DEFAULT_CFG): | |
"""Export a YOLOv model to a specific format.""" | |
cfg.model = cfg.model or 'yolov8n.yaml' | |
cfg.format = cfg.format or 'torchscript' | |
from ultralytics import YOLO | |
model = YOLO(cfg.model) | |
model.export(**vars(cfg)) | |
if __name__ == '__main__': | |
""" | |
CLI: | |
yolo mode=export model=yolov8n.yaml format=onnx | |
""" | |
export() | |