Spaces:
Running
Running
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
""" | |
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc. | |
Usage - sources: | |
$ yolo mode=predict model=yolov8n.pt source=0 # webcam | |
img.jpg # image | |
vid.mp4 # video | |
screen # screenshot | |
path/ # directory | |
list.txt # list of images | |
list.streams # list of streams | |
'path/*.jpg' # glob | |
'https://youtu.be/Zgi9g1ksQHc' # YouTube | |
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream | |
Usage - formats: | |
$ yolo mode=predict model=yolov8n.pt # PyTorch | |
yolov8n.torchscript # TorchScript | |
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True | |
yolov8n_openvino_model # OpenVINO | |
yolov8n.engine # TensorRT | |
yolov8n.mlmodel # CoreML (macOS-only) | |
yolov8n_saved_model # TensorFlow SavedModel | |
yolov8n.pb # TensorFlow GraphDef | |
yolov8n.tflite # TensorFlow Lite | |
yolov8n_edgetpu.tflite # TensorFlow Edge TPU | |
yolov8n_paddle_model # PaddlePaddle | |
""" | |
import platform | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
from ultralytics.cfg import get_cfg | |
from ultralytics.data import load_inference_source | |
from ultralytics.data.augment import LetterBox, classify_transforms | |
from ultralytics.nn.autobackend import AutoBackend | |
from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, SETTINGS, WINDOWS, callbacks, colorstr, ops | |
from ultralytics.utils.checks import check_imgsz, check_imshow | |
from ultralytics.utils.files import increment_path | |
from ultralytics.utils.torch_utils import select_device, smart_inference_mode | |
STREAM_WARNING = """ | |
WARNING ⚠️ stream/video/webcam/dir predict source will accumulate results in RAM unless `stream=True` is passed, | |
causing potential out-of-memory errors for large sources or long-running streams/videos. | |
Usage: | |
results = model(source=..., stream=True) # generator of Results objects | |
for r in results: | |
boxes = r.boxes # Boxes object for bbox outputs | |
masks = r.masks # Masks object for segment masks outputs | |
probs = r.probs # Class probabilities for classification outputs | |
""" | |
inference_Time=0 | |
class BasePredictor: | |
""" | |
BasePredictor | |
A base class for creating predictors. | |
Attributes: | |
args (SimpleNamespace): Configuration for the predictor. | |
save_dir (Path): Directory to save results. | |
done_warmup (bool): Whether the predictor has finished setup. | |
model (nn.Module): Model used for prediction. | |
data (dict): Data configuration. | |
device (torch.device): Device used for prediction. | |
dataset (Dataset): Dataset used for prediction. | |
vid_path (str): Path to video file. | |
vid_writer (cv2.VideoWriter): Video writer for saving video output. | |
data_path (str): Path to data. | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
""" | |
Initializes the BasePredictor class. | |
Args: | |
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. | |
overrides (dict, optional): Configuration overrides. Defaults to None. | |
""" | |
self.args = get_cfg(cfg, overrides) | |
self.save_dir = self.get_save_dir() | |
if self.args.conf is None: | |
self.args.conf = 0.25 # default conf=0.25 | |
self.done_warmup = False | |
if self.args.show: | |
self.args.show = check_imshow(warn=True) | |
# Usable if setup is done | |
self.model = None | |
self.data = self.args.data # data_dict | |
self.imgsz = None | |
self.device = None | |
self.dataset = None | |
self.vid_path, self.vid_writer = None, None | |
self.plotted_img = None | |
self.data_path = None | |
self.source_type = None | |
self.batch = None | |
self.results = None | |
self.transforms = None | |
self.callbacks = _callbacks or callbacks.get_default_callbacks() | |
self.txt_path = None | |
callbacks.add_integration_callbacks(self) | |
def get_save_dir(self): | |
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task | |
name = self.args.name or f'{self.args.mode}' | |
return increment_path(Path(project) / name, exist_ok=self.args.exist_ok) | |
def preprocess(self, im): | |
"""Prepares input image before inference. | |
Args: | |
im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list. | |
""" | |
not_tensor = not isinstance(im, torch.Tensor) | |
if not_tensor: | |
im = np.stack(self.pre_transform(im)) | |
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w) | |
im = np.ascontiguousarray(im) # contiguous | |
im = torch.from_numpy(im) | |
img = im.to(self.device) | |
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 | |
if not_tensor: | |
img /= 255 # 0 - 255 to 0.0 - 1.0 | |
return img | |
def inference(self, im, *args, **kwargs): | |
visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem, | |
mkdir=True) if self.args.visualize and (not self.source_type.tensor) else False | |
return self.model(im, augment=self.args.augment, visualize=visualize) | |
def pre_transform(self, im): | |
"""Pre-transform input image before inference. | |
Args: | |
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. | |
Return: A list of transformed imgs. | |
""" | |
same_shapes = all(x.shape == im[0].shape for x in im) | |
auto = same_shapes and self.model.pt | |
return [LetterBox(self.imgsz, auto=auto, stride=self.model.stride)(image=x) for x in im] | |
def write_results(self, idx, results, batch): | |
"""Write inference results to a file or directory.""" | |
p, im, _ = batch | |
log_string = '' | |
if len(im.shape) == 3: | |
im = im[None] # expand for batch dim | |
if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1 | |
log_string += f'{idx}: ' | |
frame = self.dataset.count | |
else: | |
frame = getattr(self.dataset, 'frame', 0) | |
self.data_path = p | |
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') | |
log_string += '%gx%g ' % im.shape[2:] # print string | |
result = results[idx] | |
log_string += result.verbose() | |
if self.args.save or self.args.show: # Add bbox to image | |
plot_args = { | |
'line_width': self.args.line_width, | |
'boxes': self.args.boxes, | |
'conf': self.args.show_conf, | |
'labels': self.args.show_labels} | |
if not self.args.retina_masks: | |
plot_args['im_gpu'] = im[idx] | |
self.plotted_img = result.plot(**plot_args) | |
# Write | |
if self.args.save_txt: | |
result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf) | |
if self.args.save_crop: | |
result.save_crop(save_dir=self.save_dir / 'crops', | |
file_name=self.data_path.stem + ('' if self.dataset.mode == 'image' else f'_{frame}')) | |
return log_string | |
def postprocess(self, preds, img, orig_imgs): | |
"""Post-processes predictions for an image and returns them.""" | |
return preds | |
def __call__(self, source=None, model=None, stream=False, *args, **kwargs): | |
"""Performs inference on an image or stream.""" | |
self.stream = stream | |
if stream: | |
return self.stream_inference(source, model, *args, **kwargs) | |
else: | |
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one | |
def predict_cli(self, source=None, model=None): | |
"""Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode.""" | |
gen = self.stream_inference(source, model) | |
for _ in gen: # running CLI inference without accumulating any outputs (do not modify) | |
pass | |
def setup_source(self, source): | |
"""Sets up source and inference mode.""" | |
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size | |
self.transforms = getattr(self.model.model, 'transforms', classify_transforms( | |
self.imgsz[0])) if self.args.task == 'classify' else None | |
self.dataset = load_inference_source(source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride) | |
self.source_type = self.dataset.source_type | |
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams | |
len(self.dataset) > 1000 or # images | |
any(getattr(self.dataset, 'video_flag', [False]))): # videos | |
LOGGER.warning(STREAM_WARNING) | |
self.vid_path, self.vid_writer = [None] * self.dataset.bs, [None] * self.dataset.bs | |
def stream_inference(self, source=None, model=None, *args, **kwargs): | |
"""Streams real-time inference on camera feed and saves results to file.""" | |
if self.args.verbose: | |
LOGGER.info('') | |
# Setup model | |
if not self.model: | |
self.setup_model(model) | |
# Setup source every time predict is called | |
self.setup_source(source if source is not None else self.args.source) | |
# Check if save_dir/ label file exists | |
if self.args.save or self.args.save_txt: | |
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) | |
# Warmup model | |
if not self.done_warmup: | |
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz)) | |
self.done_warmup = True | |
self.seen, self.windows, self.batch, profilers = 0, [], None, (ops.Profile(), ops.Profile(), ops.Profile()) | |
self.run_callbacks('on_predict_start') | |
for batch in self.dataset: | |
self.run_callbacks('on_predict_batch_start') | |
self.batch = batch | |
path, im0s, vid_cap, s = batch | |
# Preprocess | |
with profilers[0]: | |
im = self.preprocess(im0s) | |
# Inference | |
with profilers[1]: | |
preds = self.inference(im, *args, **kwargs) | |
# Postprocess | |
with profilers[2]: | |
self.results = self.postprocess(preds, im, im0s) | |
self.run_callbacks('on_predict_postprocess_end') | |
# Visualize, save, write results | |
n = len(im0s) | |
for i in range(n): | |
self.seen += 1 | |
self.results[i].speed = { | |
'preprocess': profilers[0].dt * 1E3 / n, | |
'inference': profilers[1].dt * 1E3 / n, | |
'postprocess': profilers[2].dt * 1E3 / n} | |
p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy() | |
p = Path(p) | |
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show: | |
s += self.write_results(i, self.results, (p, im, im0)) | |
if self.args.save or self.args.save_txt: | |
self.results[i].save_dir = self.save_dir.__str__() | |
if self.args.show and self.plotted_img is not None: | |
self.show(p) | |
if self.args.save and self.plotted_img is not None: | |
self.save_preds(vid_cap, i, str(self.save_dir / p.name)) | |
self.run_callbacks('on_predict_batch_end') | |
yield from self.results | |
# Print time (inference-only) | |
if self.args.verbose: | |
LOGGER.info(f'{s}{profilers[1].dt * 1E3:.1f}ms') | |
# Release assets | |
if isinstance(self.vid_writer[-1], cv2.VideoWriter): | |
self.vid_writer[-1].release() # release final video writer | |
# Print results | |
if self.args.verbose and self.seen: | |
t = tuple(x.t / self.seen * 1E3 for x in profilers) # speeds per image | |
LOGGER.info(f'Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape ' | |
f'{(1, 3, *im.shape[2:])}' % t) | |
if self.args.save or self.args.save_txt or self.args.save_crop: | |
nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels | |
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else '' | |
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}") | |
self.run_callbacks('on_predict_end') | |
def setup_model(self, model, verbose=True): | |
"""Initialize YOLO model with given parameters and set it to evaluation mode.""" | |
self.model = AutoBackend(model or self.args.model, | |
device=select_device(self.args.device, verbose=verbose), | |
dnn=self.args.dnn, | |
data=self.args.data, | |
fp16=self.args.half, | |
fuse=True, | |
verbose=verbose) | |
self.device = self.model.device # update device | |
self.args.half = self.model.fp16 # update half | |
self.model.eval() | |
def show(self, p): | |
"""Display an image in a window using OpenCV imshow().""" | |
im0 = self.plotted_img | |
if platform.system() == 'Linux' and p not in self.windows: | |
self.windows.append(p) | |
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) | |
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) | |
cv2.imshow(str(p), im0) | |
cv2.waitKey(500 if self.batch[3].startswith('image') else 1) # 1 millisecond | |
def save_preds(self, vid_cap, idx, save_path): | |
"""Save video predictions as mp4 at specified path.""" | |
im0 = self.plotted_img | |
# Save imgs | |
if self.dataset.mode == 'image': | |
cv2.imwrite(save_path, im0) | |
else: # 'video' or 'stream' | |
if self.vid_path[idx] != save_path: # new video | |
self.vid_path[idx] = save_path | |
if isinstance(self.vid_writer[idx], cv2.VideoWriter): | |
self.vid_writer[idx].release() # release previous video writer | |
if vid_cap: # video | |
fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec | |
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
else: # stream | |
fps, w, h = 30, im0.shape[1], im0.shape[0] | |
suffix = '.mp4' if MACOS else '.avi' if WINDOWS else '.avi' | |
fourcc = 'avc1' if MACOS else 'WMV2' if WINDOWS else 'MJPG' | |
save_path = str(Path(save_path).with_suffix(suffix)) | |
self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) | |
self.vid_writer[idx].write(im0) | |
def run_callbacks(self, event: str): | |
"""Runs all registered callbacks for a specific event.""" | |
for callback in self.callbacks.get(event, []): | |
callback(self) | |
def add_callback(self, event: str, func): | |
""" | |
Add callback | |
""" | |
self.callbacks[event].append(func) | |