Spaces:
Running
Running
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
""" | |
SAM model interface | |
""" | |
from ultralytics.engine.model import Model | |
from ultralytics.utils.torch_utils import model_info | |
from .build import build_sam | |
from .predict import Predictor | |
class SAM(Model): | |
""" | |
SAM model interface. | |
""" | |
def __init__(self, model='sam_b.pt') -> None: | |
if model and not model.endswith('.pt') and not model.endswith('.pth'): | |
# Should raise AssertionError instead? | |
raise NotImplementedError('Segment anything prediction requires pre-trained checkpoint') | |
super().__init__(model=model, task='segment') | |
def _load(self, weights: str, task=None): | |
self.model = build_sam(weights) | |
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, **kwargs): | |
"""Predicts and returns segmentation masks for given image or video source.""" | |
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024) | |
kwargs.update(overrides) | |
prompts = dict(bboxes=bboxes, points=points, labels=labels) | |
return super().predict(source, stream, prompts=prompts, **kwargs) | |
def __call__(self, source=None, stream=False, bboxes=None, points=None, labels=None, **kwargs): | |
"""Calls the 'predict' function with given arguments to perform object detection.""" | |
return self.predict(source, stream, bboxes, points, labels, **kwargs) | |
def info(self, detailed=False, verbose=True): | |
""" | |
Logs model info. | |
Args: | |
detailed (bool): Show detailed information about model. | |
verbose (bool): Controls verbosity. | |
""" | |
return model_info(self.model, detailed=detailed, verbose=verbose) | |
def task_map(self): | |
return {'segment': {'predictor': Predictor}} | |