Spaces:
Running
Running
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import os | |
import re | |
from pathlib import Path | |
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, colorstr | |
try: | |
import mlflow | |
assert not TESTS_RUNNING # do not log pytest | |
assert hasattr(mlflow, '__version__') # verify package is not directory | |
assert SETTINGS['mlflow'] is True # verify integration is enabled | |
except (ImportError, AssertionError): | |
mlflow = None | |
def on_pretrain_routine_end(trainer): | |
"""Logs training parameters to MLflow.""" | |
global mlflow, run, run_id, experiment_name | |
if os.environ.get('MLFLOW_TRACKING_URI') is None: | |
mlflow = None | |
if mlflow: | |
mlflow_location = os.environ['MLFLOW_TRACKING_URI'] # "http://192.168.xxx.xxx:5000" | |
mlflow.set_tracking_uri(mlflow_location) | |
experiment_name = os.environ.get('MLFLOW_EXPERIMENT_NAME') or trainer.args.project or '/Shared/YOLOv8' | |
run_name = os.environ.get('MLFLOW_RUN') or trainer.args.name | |
experiment = mlflow.get_experiment_by_name(experiment_name) | |
if experiment is None: | |
mlflow.create_experiment(experiment_name) | |
mlflow.set_experiment(experiment_name) | |
prefix = colorstr('MLFlow: ') | |
try: | |
run, active_run = mlflow, mlflow.active_run() | |
if not active_run: | |
active_run = mlflow.start_run(experiment_id=experiment.experiment_id, run_name=run_name) | |
run_id = active_run.info.run_id | |
LOGGER.info(f'{prefix}Using run_id({run_id}) at {mlflow_location}') | |
run.log_params(vars(trainer.model.args)) | |
except Exception as err: | |
LOGGER.error(f'{prefix}Failing init - {repr(err)}') | |
LOGGER.warning(f'{prefix}Continuing without Mlflow') | |
def on_fit_epoch_end(trainer): | |
"""Logs training metrics to Mlflow.""" | |
if mlflow: | |
metrics_dict = {f"{re.sub('[()]', '', k)}": float(v) for k, v in trainer.metrics.items()} | |
run.log_metrics(metrics=metrics_dict, step=trainer.epoch) | |
def on_train_end(trainer): | |
"""Called at end of train loop to log model artifact info.""" | |
if mlflow: | |
root_dir = Path(__file__).resolve().parents[3] | |
run.log_artifact(trainer.last) | |
run.log_artifact(trainer.best) | |
run.pyfunc.log_model(artifact_path=experiment_name, | |
code_path=[str(root_dir)], | |
artifacts={'model_path': str(trainer.save_dir)}, | |
python_model=run.pyfunc.PythonModel()) | |
callbacks = { | |
'on_pretrain_routine_end': on_pretrain_routine_end, | |
'on_fit_epoch_end': on_fit_epoch_end, | |
'on_train_end': on_train_end} if mlflow else {} | |