Evan Frick
commited on
Commit
•
ebb58d8
1
Parent(s):
28a71da
qol
Browse files
app.py
CHANGED
@@ -24,6 +24,10 @@ def load_data(file_path):
|
|
24 |
def contains_list(column):
|
25 |
return column.apply(lambda x: isinstance(x, list)).any()
|
26 |
|
|
|
|
|
|
|
|
|
27 |
def main():
|
28 |
# Load the JSON data
|
29 |
data = load_data('results.json')
|
@@ -57,10 +61,19 @@ def main():
|
|
57 |
if isinstance(submetrics, dict):
|
58 |
for metric_name, value in submetrics.items():
|
59 |
# Create a compound key
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
else:
|
63 |
flattened_metrics[subkey] = submetrics
|
|
|
64 |
records.append({
|
65 |
"Model": model,
|
66 |
"Type": model_type,
|
@@ -81,7 +94,7 @@ def main():
|
|
81 |
df = df.loc[:, ~df.apply(contains_list)]
|
82 |
|
83 |
if "human" not in selected_benchmark:
|
84 |
-
df = df[sorted(df.columns, key=lambda s: s.lower() if s != "Type" else "A")]
|
85 |
|
86 |
# Set 'Model' as the index
|
87 |
df.set_index(["Model"], inplace=True)
|
@@ -122,7 +135,7 @@ def main():
|
|
122 |
|
123 |
|
124 |
# Display the DataFrame
|
125 |
-
st.dataframe(df_display.sort_values(df_display.columns[1], ascending=False).style.background_gradient(cmap='summer_r', axis=0)
|
126 |
if len(df_display) else df_display, use_container_width=True, height=500)
|
127 |
|
128 |
# Optional: Allow user to download the data as CSV
|
|
|
24 |
def contains_list(column):
|
25 |
return column.apply(lambda x: isinstance(x, list)).any()
|
26 |
|
27 |
+
INVERT = {'brier', 'loss'}
|
28 |
+
|
29 |
+
SCALE = {'accuracy', 'row-wise pearson', 'confidence_agreement', 'spearman', 'kendalltau', 'arena_under_curve', 'mean_max_score', 'mean_end_score'}
|
30 |
+
|
31 |
def main():
|
32 |
# Load the JSON data
|
33 |
data = load_data('results.json')
|
|
|
61 |
if isinstance(submetrics, dict):
|
62 |
for metric_name, value in submetrics.items():
|
63 |
# Create a compound key
|
64 |
+
if metric_name in SCALE:
|
65 |
+
|
66 |
+
value = 100 * value
|
67 |
+
|
68 |
+
if metric_name in INVERT:
|
69 |
+
key = f"{subkey} - (1 - {metric_name})"
|
70 |
+
flattened_metrics[key] = 1 - value
|
71 |
+
else:
|
72 |
+
key = f"{subkey} - {metric_name}"
|
73 |
+
flattened_metrics[key] = value
|
74 |
else:
|
75 |
flattened_metrics[subkey] = submetrics
|
76 |
+
|
77 |
records.append({
|
78 |
"Model": model,
|
79 |
"Type": model_type,
|
|
|
94 |
df = df.loc[:, ~df.apply(contains_list)]
|
95 |
|
96 |
if "human" not in selected_benchmark:
|
97 |
+
df = df[sorted(df.columns, key=lambda s: s.replace("(1", "l").lower() if s != "Type" else "A")]
|
98 |
|
99 |
# Set 'Model' as the index
|
100 |
df.set_index(["Model"], inplace=True)
|
|
|
135 |
|
136 |
|
137 |
# Display the DataFrame
|
138 |
+
st.dataframe(df_display.sort_values(df_display.columns[1], ascending=False).style.background_gradient(cmap='summer_r', axis=0).format(precision=4)
|
139 |
if len(df_display) else df_display, use_container_width=True, height=500)
|
140 |
|
141 |
# Optional: Allow user to download the data as CSV
|