Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from gradio.components.textbox import Textbox | |
from gradio.components.dataframe import Dataframe | |
from gradio.components.checkboxgroup import CheckboxGroup | |
import copy | |
# from fastchat.serve.monitor.monitor import build_leaderboard_tab, build_basic_stats_tab, basic_component_values, leader_component_values | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
LINKS, | |
) | |
from src.display.css_html_js import ( | |
custom_css, | |
CSS_EXTERNAL, | |
JS_EXTERNAL, | |
) | |
from src.display.utils import ( | |
AutoEvalColumn, | |
fields, | |
) | |
from src.envs import ( | |
API, | |
EVAL_DETAILED_RESULTS_PATH, | |
EVAL_RESULTS_PATH, | |
EVAL_DETAILED_RESULTS_REPO, | |
REPO_ID, | |
RESULTS_REPO, | |
TOKEN, | |
NEWEST_VERSION, | |
) | |
from src.populate import get_leaderboard_df | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
print(EVAL_DETAILED_RESULTS_REPO) | |
snapshot_download( | |
repo_id=EVAL_DETAILED_RESULTS_REPO, | |
local_dir=EVAL_DETAILED_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN, | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, | |
local_dir=EVAL_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN, | |
) | |
except Exception: | |
restart_space() | |
LEADERBOARD_DF = get_leaderboard_df(RESULTS_REPO) | |
def GET_DEFAULT_TEXTBOX(): | |
return gr.Textbox("", placeholder="π Search Models... [press enter]", label="Filter Models by Name") | |
def GET_DEFAULT_CHECKBOX(subset): | |
choices = list(LEADERBOARD_DF[subset].columns) | |
print("Choices:", choices) | |
choices.remove("Model Name") | |
# print("Choices:", [c.name for c in fields(AutoEvalColumn) if not c.hidden]) | |
return gr.CheckboxGroup( | |
choices=choices, | |
label="Select Columns to Display", | |
value=choices, | |
) | |
old_version = NEWEST_VERSION | |
def init_leaderboard(dataframes): | |
subsets = list(reversed(list(dataframes.keys()))) | |
with gr.Row(): | |
selected_subset = gr.Dropdown(choices=subsets, label="Select Dataset Subset", value=NEWEST_VERSION) | |
research_textbox = GET_DEFAULT_TEXTBOX() | |
selected_columns = GET_DEFAULT_CHECKBOX(NEWEST_VERSION) | |
data = dataframes[NEWEST_VERSION] | |
with gr.Row(): | |
# datatype = | |
df = gr.Dataframe(data, type="pandas") | |
def refresh(subset): | |
global LEADERBOARD_DF | |
LEADERBOARD_DF = get_leaderboard_df(RESULTS_REPO) | |
# default_columns = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default] | |
default_columns = list(LEADERBOARD_DF[subset].columns) | |
# default_columns.remove("Model Name") | |
# return update_data(subset, None, default_columns), GET_DEFAULT_TEXTBOX(), GET_DEFAULT_CHECKBOX(subset) | |
return update_data(subset, None, default_columns, force_refresh=True) | |
def update_data(subset, search_term, selected_columns, force_refresh=False): | |
global old_version | |
if old_version != subset or force_refresh: | |
search_term = None | |
selected_columns = GET_DEFAULT_CHECKBOX(subset) | |
print("Subset:", subset) | |
print("Search Term:", search_term) | |
print("Selected Columns:", selected_columns) | |
if isinstance(selected_columns, CheckboxGroup): | |
print("Selected Columns:", selected_columns.choices) | |
bak_selected_columns = copy.deepcopy(selected_columns) | |
old_version = subset | |
filtered_data = dataframes[subset] | |
if search_term: | |
filtered_data = filtered_data[dataframes[subset]["Model Name"].str.contains(search_term, case=False)] | |
filtered_data.sort_values(by="Total", ascending=False, inplace=True) | |
# selected_columns.append("Model Name") | |
if isinstance(selected_columns, CheckboxGroup): | |
selected_columns = selected_columns.choices | |
if isinstance(selected_columns[0], tuple): | |
selected_columns = [c[1] for c in selected_columns] | |
print("Selected Columns:", selected_columns) | |
selected_columns = [ | |
c for c in filtered_data.columns if c in selected_columns or c == "Model Name" | |
] | |
# selected_columns = [c.name for c in fields(AutoEvalColumn) if c.name in selected_columns] | |
selected_data = filtered_data[selected_columns] | |
return gr.DataFrame( | |
selected_data, | |
type="pandas", | |
# datatype=[c.type for c in fields(AutoEvalColumn) if c.name in selected_columns], | |
), research_textbox, bak_selected_columns | |
with gr.Row(): | |
refresh_button = gr.Button("Refresh") | |
refresh_button.click( | |
refresh, | |
inputs=[ | |
selected_subset, | |
], | |
outputs=[df, research_textbox, selected_columns], | |
concurrency_limit=20, | |
) | |
selected_subset.change(update_data, inputs=[selected_subset, research_textbox, selected_columns], outputs=[df, research_textbox, selected_columns]) | |
research_textbox.submit(update_data, inputs=[selected_subset, research_textbox, selected_columns], outputs=[df, research_textbox, selected_columns]) | |
selected_columns.change(update_data, inputs=[selected_subset, research_textbox, selected_columns], outputs=[df, research_textbox, selected_columns]) | |
def init_detailed_results(): | |
with gr.Row(): | |
gr.HTML( | |
"""\ | |
<iframe | |
src="https://huggingface.co/datasets/lmms-lab/LiveBenchDetailedResults/embed/viewer/" | |
frameborder="0" | |
width="100%" | |
height="800px" | |
></iframe> | |
""" | |
) | |
HEAD = "".join( | |
[f'<link rel="stylesheet" href="{css}">' for css in CSS_EXTERNAL] | |
+ [f'<script src="{js}" crossorigin="anonymous"></script>' for js in JS_EXTERNAL] | |
) | |
demo = gr.Blocks(css=custom_css, head=HEAD) | |
with demo: | |
gr.HTML(TITLE) | |
gr.HTML(LINKS) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LiveBench Results", elem_id="llm-benchmark-tab-table", id=0): | |
init_leaderboard(LEADERBOARD_DF) | |
with gr.TabItem("π Detailed Results", elem_id="llm-benchmark-tab-table", id=2): | |
init_detailed_results() | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
gr.Markdown("```bib\n" + CITATION_BUTTON_TEXT + "\n```") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=3600) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |