File size: 12,232 Bytes
50ed5c4
 
 
 
 
 
 
 
 
 
d0c890e
50ed5c4
 
 
 
 
 
6c21543
73c1b48
6c21543
 
73c1b48
6c21543
 
50ed5c4
6c21543
50ed5c4
 
 
 
 
 
 
 
 
d0c890e
50ed5c4
 
 
 
73c1b48
50ed5c4
 
 
 
 
 
d0c890e
50ed5c4
 
 
 
 
 
 
 
 
 
 
 
 
4ea00ca
 
50ed5c4
 
 
 
 
d0c890e
50ed5c4
d0c890e
50ed5c4
d0c890e
50ed5c4
 
d0c890e
50ed5c4
 
 
d0c890e
50ed5c4
d0c890e
50ed5c4
 
 
 
d0c890e
50ed5c4
 
 
d0c890e
 
 
50ed5c4
 
 
 
 
 
 
 
 
d0c890e
50ed5c4
d0c890e
50ed5c4
 
d0c890e
50ed5c4
 
 
 
 
 
 
d0c890e
 
50ed5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c890e
50ed5c4
d0c890e
50ed5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c890e
50ed5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c890e
50ed5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c890e
50ed5c4
 
 
 
 
 
 
d0c890e
 
 
 
 
50ed5c4
 
 
 
 
 
 
 
d0c890e
1188a5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import gradio as gr
import pandas as pd
import requests
import os
import shutil
import json
import pandas as pd
import subprocess
import plotly.express as px
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_radio):
   
    num_parts = num_parts_dropdown
    token_counts_split = token_counts_radio
    line_counts_split = line_counts_radio
    cyclomatic_complexity_split = cyclomatic_complexity_radio

    dataframes = []
    # script_path = os.path.abspath(__file__)

    # # 获取当前脚本所在的目录
    # script_dir = os.path.dirname(script_path)
    
    # print("当前脚本文件的绝对路径:", script_path)
    # print("当前脚本文件所在的目录:", script_dir)
    if token_counts_split=="Equal Frequency Partitioning":
        token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv")
        dataframes.append(token_counts_df)

    if line_counts_split=="Equal Frequency Partitioning":
        line_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv")
        dataframes.append(line_counts_df)

    if cyclomatic_complexity_split=="Equal Frequency Partitioning":
        cyclomatic_complexity_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv")
        dataframes.append(cyclomatic_complexity_df)
  
    if len(dataframes) > 0:
        combined_df = dataframes[0]
        for df in dataframes[1:]:
            combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y'))
            combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')] 
        return combined_df
    else:
        return pd.DataFrame()




def execute_specified_python_files(directory_list, file_list):
    for directory in directory_list:
        for py_file in file_list:
            file_path = os.path.join(directory, py_file)
            if os.path.isfile(file_path) and py_file.endswith('.py'):
                print(f"Executing {file_path}...")
                try:
                    subprocess.run(['python', file_path], check=True)
                    print(f"{file_path} executed successfully.")
                except subprocess.CalledProcessError as e:
                    print(f"Error executing {file_path}: {e}")
            else:
                print(f"File {file_path} does not exist or is not a Python file.")




def generate_file(file_obj, user_string, user_number,dataset_choice):
    tmpdir = 'tmpdir'

    
    FilePath = file_obj.name
    print('上传文件的地址:{}'.format(file_obj.name))  

    
    shutil.copy(file_obj.name, tmpdir)

  
    FileName = os.path.basename(file_obj.name)

    print(FilePath)
   
    with open(FilePath, 'r', encoding="utf-8") as file_obj:
       
        outputPath = os.path.join('F:/Desktop/test', FileName)
        data = json.load(file_obj)
        print("data:", data)

        
        with open(outputPath, 'w', encoding="utf-8") as w:
            json.dump(data, w, ensure_ascii=False, indent=4)

       
        file_content = json.dumps(data)  
        url = "http://localhost:6222/submit" 
        files = {'file': (FileName, file_content, 'application/json')}
        payload = {
            'user_string': user_string,
            'user_number': user_number,
            'dataset_choice':dataset_choice
        }

        response = requests.post(url, files=files, data=payload)
        print(response)
        
        if response.status_code == 200:
            
            output_data = response.json()

            
            output_file_path = os.path.join('E:/python-testn/pythonProject3/hh_1/evaluate_result', 'new-model.json')
            with open(output_file_path, 'w', encoding="utf-8") as f:
                json.dump(output_data, f, ensure_ascii=False, indent=4)

            print(f"File saved at: {output_file_path}")

            # 调用更新数据文件的函数
            directory_list = ['/path/to/directory1', '/path/to/directory2'] 
            file_list = ['file1.py', 'file2.py', 'file3.py'] 

            execute_specified_python_files(directory_list, file_list)

            return {"status": "success", "message": "File received and saved"}
        else:
            return {"status": "error", "message": response.text}

        # 返回服务器响应
    return {"status": "success", "message": response.text}

def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type):
    options = []
    if token_counts:
        options.append("Token Counts in Prompt")
    if line_counts:
        options.append("Line Counts in Prompt")
    if cyclomatic_complexity:
        options.append("Cyclomatic Complexity")
    if problem_type:
        options.append("Problem Type")

    return gr.update(choices=options)

def plot_csv(radio,num):
    if radio=="Line Counts in Prompt":
        radio_choice="line_counts"
        file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
    elif radio=="Token Counts in Prompt":
        radio_choice="token_counts"
        file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
    elif radio=="Cyclomatic Complexity":
        radio_choice="CC"
        file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
    elif radio=="Problem Type":
        radio_choice="problem_type"
        file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/cata_result.csv'
    
    df = pd.read_csv(file_path)
   
    df.set_index('Model', inplace=True)

    df_transposed = df.T

    fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns,
                  title='Model Evaluation Results',
                  labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'},
                  color_discrete_sequence=px.colors.qualitative.Plotly)

    fig.update_traces(hovertemplate='%{y}')

    return fig

with gr.Blocks() as iface:
    gr.HTML("""
               <style>
                   .title {
                       text-align: center;
                       font-size: 3em;
                       font-weight: bold;
                       margin-bottom: 0.5em;
                   }
                   .subtitle {
                       text-align: center;
                       font-size: 2em;
                       margin-bottom: 1em;
                   }
               </style>
               <div class="title">📊 Demo-Leaderboard 📊</div>
           """)

    with gr.Tabs() as tabs:
        with gr.TabItem("Evaluation Result"):
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Row():
                        with gr.Column():
                            dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ")

                    with gr.Row():
                        custom_css = """  
                            <style>  
                                .markdown-class {  
                                    font-family: 'Helvetica', sans-serif;
                                    font-size: 17px; 
                                    font-weight: bold;  
                                    color: #333; 
                                }  
                            </style>  
                            """

                        with gr.Column():
                            gr.Markdown(
                                f"{custom_css}<div class='markdown-class'> Choose Classification Perspective </div>")

                            token_counts_checkbox = gr.Checkbox(label="Token Counts in Prompt ")
                            line_counts_checkbox = gr.Checkbox(label="Line Counts in Prompt ")
                            cyclomatic_complexity_checkbox = gr.Checkbox(label="Cyclomatic Complexity ")
                            problem_type_checkbox = gr.Checkbox(label="Problem Type ")

                        with gr.Column():
                            gr.Markdown("<div class='markdown-class'>Choose Subsets </div>")
                            num_parts_dropdown = gr.Dropdown(choices=[3, 4, 5, 6, 7, 8], label="Number of Subsets")

            with gr.Row():
                with gr.Column():
                    token_counts_radio = gr.Radio(
                        ["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
                        visible=False)
                with gr.Column():
                    line_counts_radio = gr.Radio(
                        ["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
                        visible=False)
                with gr.Column():
                    cyclomatic_complexity_radio = gr.Radio(
                        ["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
                        visible=False)

            token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio),
                                         inputs=token_counts_checkbox, outputs=token_counts_radio)
            line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio),
                                        inputs=line_counts_checkbox, outputs=line_counts_radio)
            cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio),
                                                  inputs=cyclomatic_complexity_checkbox,
                                                  outputs=cyclomatic_complexity_radio)

            with gr.Tabs() as inner_tabs:
                with gr.TabItem("Leaderboard"):
                    dataframe_output = gr.Dataframe(elem_id="dataframe")
                    css_output = gr.HTML()
                    confirm_button = gr.Button("Confirm ")
                    confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio,
                                                                line_counts_radio, cyclomatic_complexity_radio],
                                         outputs=dataframe_output)

                with gr.TabItem("Line chart"):
                    select_radio = gr.Radio(choices=[])
                    checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox,
                                  problem_type_checkbox]
                    for checkbox in checkboxes:
                        checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio)
                    select_radio.change(fn=plot_csv, inputs=[select_radio, num_parts_dropdown],
                                        outputs=gr.Plot(label="Line Plot "))

        with gr.TabItem("Upload"):
            gr.Markdown("Upload a JSON file")
            with gr.Row():
                with gr.Column():
                    string_input = gr.Textbox(label="Enter the Model Name")
                    number_input = gr.Number(label="Select the Number of Samples")
                    dataset_choice = gr.Dropdown(label="Select Dataset", choices=["humaneval", "mbpp"])
                with gr.Column():
                    file_input = gr.File(label="Upload Generation Result in JSON file")
                    upload_button = gr.Button("Confirm and Upload")

            json_output = gr.JSON(label="")

            upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice],
                                outputs=json_output)



    def toggle_radio(checkbox, radio):
        return gr.update(visible=checkbox)



    css = """  
        #scale1 {  
    border: 1px solid rgba(0, 0, 0, 0.2); 
    padding: 10px;  
    border-radius: 8px;   
    background-color: #f9f9f9;  
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);  
}  
        }  
        """
    gr.HTML(f"<style>{css}</style>")





iface.launch()