File size: 12,232 Bytes
50ed5c4 d0c890e 50ed5c4 6c21543 73c1b48 6c21543 73c1b48 6c21543 50ed5c4 6c21543 50ed5c4 d0c890e 50ed5c4 73c1b48 50ed5c4 d0c890e 50ed5c4 4ea00ca 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 50ed5c4 d0c890e 1188a5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import gradio as gr
import pandas as pd
import requests
import os
import shutil
import json
import pandas as pd
import subprocess
import plotly.express as px
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_radio):
num_parts = num_parts_dropdown
token_counts_split = token_counts_radio
line_counts_split = line_counts_radio
cyclomatic_complexity_split = cyclomatic_complexity_radio
dataframes = []
# script_path = os.path.abspath(__file__)
# # 获取当前脚本所在的目录
# script_dir = os.path.dirname(script_path)
# print("当前脚本文件的绝对路径:", script_path)
# print("当前脚本文件所在的目录:", script_dir)
if token_counts_split=="Equal Frequency Partitioning":
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv")
dataframes.append(token_counts_df)
if line_counts_split=="Equal Frequency Partitioning":
line_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv")
dataframes.append(line_counts_df)
if cyclomatic_complexity_split=="Equal Frequency Partitioning":
cyclomatic_complexity_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv")
dataframes.append(cyclomatic_complexity_df)
if len(dataframes) > 0:
combined_df = dataframes[0]
for df in dataframes[1:]:
combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y'))
combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')]
return combined_df
else:
return pd.DataFrame()
def execute_specified_python_files(directory_list, file_list):
for directory in directory_list:
for py_file in file_list:
file_path = os.path.join(directory, py_file)
if os.path.isfile(file_path) and py_file.endswith('.py'):
print(f"Executing {file_path}...")
try:
subprocess.run(['python', file_path], check=True)
print(f"{file_path} executed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error executing {file_path}: {e}")
else:
print(f"File {file_path} does not exist or is not a Python file.")
def generate_file(file_obj, user_string, user_number,dataset_choice):
tmpdir = 'tmpdir'
FilePath = file_obj.name
print('上传文件的地址:{}'.format(file_obj.name))
shutil.copy(file_obj.name, tmpdir)
FileName = os.path.basename(file_obj.name)
print(FilePath)
with open(FilePath, 'r', encoding="utf-8") as file_obj:
outputPath = os.path.join('F:/Desktop/test', FileName)
data = json.load(file_obj)
print("data:", data)
with open(outputPath, 'w', encoding="utf-8") as w:
json.dump(data, w, ensure_ascii=False, indent=4)
file_content = json.dumps(data)
url = "http://localhost:6222/submit"
files = {'file': (FileName, file_content, 'application/json')}
payload = {
'user_string': user_string,
'user_number': user_number,
'dataset_choice':dataset_choice
}
response = requests.post(url, files=files, data=payload)
print(response)
if response.status_code == 200:
output_data = response.json()
output_file_path = os.path.join('E:/python-testn/pythonProject3/hh_1/evaluate_result', 'new-model.json')
with open(output_file_path, 'w', encoding="utf-8") as f:
json.dump(output_data, f, ensure_ascii=False, indent=4)
print(f"File saved at: {output_file_path}")
# 调用更新数据文件的函数
directory_list = ['/path/to/directory1', '/path/to/directory2']
file_list = ['file1.py', 'file2.py', 'file3.py']
execute_specified_python_files(directory_list, file_list)
return {"status": "success", "message": "File received and saved"}
else:
return {"status": "error", "message": response.text}
# 返回服务器响应
return {"status": "success", "message": response.text}
def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type):
options = []
if token_counts:
options.append("Token Counts in Prompt")
if line_counts:
options.append("Line Counts in Prompt")
if cyclomatic_complexity:
options.append("Cyclomatic Complexity")
if problem_type:
options.append("Problem Type")
return gr.update(choices=options)
def plot_csv(radio,num):
if radio=="Line Counts in Prompt":
radio_choice="line_counts"
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Token Counts in Prompt":
radio_choice="token_counts"
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Cyclomatic Complexity":
radio_choice="CC"
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Problem Type":
radio_choice="problem_type"
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/cata_result.csv'
df = pd.read_csv(file_path)
df.set_index('Model', inplace=True)
df_transposed = df.T
fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns,
title='Model Evaluation Results',
labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'},
color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_traces(hovertemplate='%{y}')
return fig
with gr.Blocks() as iface:
gr.HTML("""
<style>
.title {
text-align: center;
font-size: 3em;
font-weight: bold;
margin-bottom: 0.5em;
}
.subtitle {
text-align: center;
font-size: 2em;
margin-bottom: 1em;
}
</style>
<div class="title">📊 Demo-Leaderboard 📊</div>
""")
with gr.Tabs() as tabs:
with gr.TabItem("Evaluation Result"):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ")
with gr.Row():
custom_css = """
<style>
.markdown-class {
font-family: 'Helvetica', sans-serif;
font-size: 17px;
font-weight: bold;
color: #333;
}
</style>
"""
with gr.Column():
gr.Markdown(
f"{custom_css}<div class='markdown-class'> Choose Classification Perspective </div>")
token_counts_checkbox = gr.Checkbox(label="Token Counts in Prompt ")
line_counts_checkbox = gr.Checkbox(label="Line Counts in Prompt ")
cyclomatic_complexity_checkbox = gr.Checkbox(label="Cyclomatic Complexity ")
problem_type_checkbox = gr.Checkbox(label="Problem Type ")
with gr.Column():
gr.Markdown("<div class='markdown-class'>Choose Subsets </div>")
num_parts_dropdown = gr.Dropdown(choices=[3, 4, 5, 6, 7, 8], label="Number of Subsets")
with gr.Row():
with gr.Column():
token_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
visible=False)
with gr.Column():
line_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
visible=False)
with gr.Column():
cyclomatic_complexity_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
visible=False)
token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio),
inputs=token_counts_checkbox, outputs=token_counts_radio)
line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio),
inputs=line_counts_checkbox, outputs=line_counts_radio)
cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio),
inputs=cyclomatic_complexity_checkbox,
outputs=cyclomatic_complexity_radio)
with gr.Tabs() as inner_tabs:
with gr.TabItem("Leaderboard"):
dataframe_output = gr.Dataframe(elem_id="dataframe")
css_output = gr.HTML()
confirm_button = gr.Button("Confirm ")
confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio,
line_counts_radio, cyclomatic_complexity_radio],
outputs=dataframe_output)
with gr.TabItem("Line chart"):
select_radio = gr.Radio(choices=[])
checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox,
problem_type_checkbox]
for checkbox in checkboxes:
checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio)
select_radio.change(fn=plot_csv, inputs=[select_radio, num_parts_dropdown],
outputs=gr.Plot(label="Line Plot "))
with gr.TabItem("Upload"):
gr.Markdown("Upload a JSON file")
with gr.Row():
with gr.Column():
string_input = gr.Textbox(label="Enter the Model Name")
number_input = gr.Number(label="Select the Number of Samples")
dataset_choice = gr.Dropdown(label="Select Dataset", choices=["humaneval", "mbpp"])
with gr.Column():
file_input = gr.File(label="Upload Generation Result in JSON file")
upload_button = gr.Button("Confirm and Upload")
json_output = gr.JSON(label="")
upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice],
outputs=json_output)
def toggle_radio(checkbox, radio):
return gr.update(visible=checkbox)
css = """
#scale1 {
border: 1px solid rgba(0, 0, 0, 0.2);
padding: 10px;
border-radius: 8px;
background-color: #f9f9f9;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
}
"""
gr.HTML(f"<style>{css}</style>")
iface.launch() |