Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
from fpdf import FPDF | |
import nltk | |
import os | |
import tempfile | |
from nltk.tokenize import sent_tokenize | |
import random | |
from groq import Groq | |
# Attempt to download punkt tokenizer | |
try: | |
nltk.download("punkt") | |
except: | |
print("NLTK punkt tokenizer download failed. Using custom tokenizer.") | |
def custom_sent_tokenize(text): | |
return text.split(". ") | |
def transcribe(audio_path): | |
with open(audio_path, "rb") as audio_file: | |
audio_data = audio_file.read() | |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions" | |
headers = { | |
"Authorization": "Bearer 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", # Replace with your actual API key | |
} | |
files = { | |
'file': ('audio.wav', audio_data, 'audio/wav'), | |
} | |
data = { | |
'model': 'whisper-large-v3-turbo', | |
'response_format': 'json', | |
'language': 'en', | |
} | |
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data) | |
if response.status_code == 200: | |
result = response.json() | |
transcript = result.get("text", "No transcription available.") | |
return generate_notes(transcript) | |
else: | |
error_msg = response.json().get("error", {}).get("message", "Unknown error.") | |
print(f"API Error: {error_msg}") | |
return create_error_pdf(f"API Error: {error_msg}") | |
def generate_notes(transcript): | |
# try: | |
# sentences = sent_tokenize(transcript) | |
# except LookupError: | |
# sentences = custom_sent_tokenize(transcript) | |
# # Generate long questions | |
# long_questions = [f"Explain the concept discussed in: '{sentence}'." for sentence in sentences[:5]] | |
# # Generate short questions | |
# short_questions = [f"What does '{sentence.split()[0]}' mean in the context of this text?" for sentence in sentences[:5]] | |
# # Generate MCQs with relevant distractors | |
# mcqs = [] | |
# for sentence in sentences[:5]: | |
# if len(sentence.split()) > 1: # Ensure there are enough words to create meaningful options | |
# key_word = sentence.split()[0] # Use the first word as a key term | |
# distractors = ["Term A", "Term B", "Term C"] # Replace with relevant terms if needed | |
# options = [key_word] + distractors | |
# random.shuffle(options) # Shuffle options for randomness | |
# mcq = { | |
# "question": f"What is '{key_word}' based on the context?", | |
# "options": options, | |
# "answer": key_word | |
# } | |
# mcqs.append(mcq) | |
client = Groq(api_key="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") | |
chat_completion = client.chat.completions.create( | |
# | |
# Required parameters | |
# | |
messages=[ | |
# Set an optional system message. This sets the behavior of the | |
# assistant and can be used to provide specific instructions for | |
# how it should behave throughout the conversation. | |
{ | |
"role": "system", | |
"content": "you are expert question generator from content. Generate one long question,possible number of short questions and mcqs" | |
}, | |
# Set a user message for the assistant to respond to. | |
{ | |
"role": "user", | |
"content": transcript, | |
} | |
], | |
# The language model which will generate the completion. | |
model="llama3-8b-8192", | |
# | |
# Optional parameters | |
# | |
# Controls randomness: lowering results in less random completions. | |
# As the temperature approaches zero, the model will become deterministic | |
# and repetitive. | |
temperature=0.5, | |
# The maximum number of tokens to generate. Requests can use up to | |
# 32,768 tokens shared between prompt and completion. | |
max_tokens=1024, | |
# Controls diversity via nucleus sampling: 0.5 means half of all | |
# likelihood-weighted options are considered. | |
top_p=1, | |
# A stop sequence is a predefined or user-specified text string that | |
# signals an AI to stop generating content, ensuring its responses | |
# remain focused and concise. Examples include punctuation marks and | |
# markers like "[end]". | |
stop=None, | |
# If set, partial message deltas will be sent. | |
stream=False, | |
) | |
# Print the completion returned by the LLM. | |
res=chat_completion.choices[0].message.content | |
# Generate and save a structured PDF | |
pdf_path = create_pdf(res) | |
return pdf_path | |
def create_pdf(transcript, long_questions, short_questions, mcqs): | |
pdf = FPDF() | |
pdf.add_page() | |
# Add title | |
pdf.set_font("Arial", "B", 16) | |
pdf.cell(200, 10, "Transcription Notes and Questions", ln=True, align="C") | |
# Add transcription content | |
pdf.set_font("Arial", "", 12) | |
pdf.multi_cell(0, 10, f"Transcription:\n{transcript.encode('latin1', 'replace').decode('latin1')}\n\n") | |
# Add long questions | |
pdf.set_font("Arial", "B", 14) | |
pdf.cell(200, 10, "Long Questions", ln=True) | |
pdf.set_font("Arial", "", 12) | |
for question in long_questions: | |
pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n") | |
# Add short questions | |
pdf.set_font("Arial", "B", 14) | |
pdf.cell(200, 10, "Short Questions", ln=True) | |
pdf.set_font("Arial", "", 12) | |
for question in short_questions: | |
pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n") | |
# Add MCQs | |
pdf.set_font("Arial", "B", 14) | |
pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True) | |
pdf.set_font("Arial", "", 12) | |
for mcq in mcqs: | |
pdf.multi_cell(0, 10, f"Q: {mcq['question'].encode('latin1', 'replace').decode('latin1')}") | |
for option in mcq["options"]: | |
pdf.multi_cell(0, 10, f" - {option.encode('latin1', 'replace').decode('latin1')}") | |
pdf.multi_cell(0, 10, f"Answer: {mcq['answer'].encode('latin1', 'replace').decode('latin1')}\n") | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: | |
pdf.output(temp_pdf.name) | |
pdf_path = temp_pdf.name | |
return pdf_path | |
def create_error_pdf(message): | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", "B", 16) | |
pdf.cell(200, 10, "Error Report", ln=True, align="C") | |
pdf.set_font("Arial", "", 12) | |
pdf.multi_cell(0, 10, message.encode('latin1', 'replace').decode('latin1')) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: | |
pdf.output(temp_pdf.name) | |
error_pdf_path = temp_pdf.name | |
return error_pdf_path | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(type="filepath"), | |
outputs=gr.File(label="Download PDF with Notes or Error Report"), | |
title="Voice to Text Converter and Notes Generator", | |
description="This app converts audio to text and generates academic questions including long, short, and multiple-choice questions." | |
) | |
iface.launch() | |