File size: 19,273 Bytes
46b3bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
from setup_code import *  # This imports everything from setup_code.py

class Query_Agent:
    def __init__(self, pinecone_index, pinecone_index_python, openai_client) -> None:
        # TODO: Initialize the Query_Agent agent
        self.pinecone_index = pinecone_index
        self.pinecone_index_python = pinecone_index_python
        self.openai_client = openai_client
        self.query_embedding = None
        self.codbert_tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
        self.codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")

    def get_codebert_embedding(self, code: str):
        inputs = self.codbert_tokenizer(code, return_tensors="pt", max_length=512, truncation=True)
        outputs = self.codebert_model(**inputs)
        cb_embedding = outputs.last_hidden_state.mean(dim=1)  # A simple way to pool the embeddings
        cb_embedding = cb_embedding.detach().numpy()
        cb_embedding = cb_embedding.tolist()
        cb_embedding = cb_embedding[0]
        return cb_embedding

    def get_openai_embedding(self, text, model="text-embedding-ada-002"):
        text = text.replace("\n", " ")
        return self.openai_client.embeddings.create(input=[text], model=model).data[0].embedding

    def query_vector_store(self, query, query_topic: str, index=None, k=5) -> str:
        if index == None:
            index = self.pinecone_index

        if query_topic == 'ml':
            self.query_embedding = self.get_openai_embedding(query)
        elif query_topic == 'python':
            index = self.pinecone_index_python
            self.query_embedding = self.get_codebert_embedding(query)

        def get_namespace(index):
            stat = index.describe_index_stats()
            stat_dict_key = stat['namespaces'].keys()

            stat_dict_key_list = list(stat_dict_key)
            first_key = stat_dict_key_list[0]

            return first_key

        ns = get_namespace(index)

        if query_topic == 'ml':
          matches_text = get_top_k_text(index.query(
            namespace=ns,
            top_k=k,
            vector=self.query_embedding,
            include_values=True,
            include_metadata=True
            )
          )
        elif query_topic == 'python':
          matches_text = get_top_filename(index.query(
            namespace=ns,
            top_k=k,
            vector=self.query_embedding,
            include_values=True,
            include_metadata=True
            )
          )

        return matches_text

    def process_query_response(self, head_agent, user_query, query_topic):

        # Retrieve the history related to the query_topic
        conversation = []
        index = head_agent.pinecone_index

        if query_topic == "ml":
            conversation = Head_Agent.get_history_about('ml')
        elif query_topic == 'python':
            conversation = Head_Agent.get_history_about('python')
            index = head_agent.pinecone_index_python

        # get matches from Query_Agent, which uses Pinecone
        user_query_plus_conversation = f"The current query is: {user_query}"
        if len(conversation) > 0:
            conversation_text = "\n".join(conversation)
            user_query_plus_conversation += f'The current conversation is: {conversation_text}'

        ## self.query_embedding is set here
        matches_text = self.query_vector_store(user_query_plus_conversation, query_topic, index)

        if head_agent.relevant_documents_agent.is_relevant(matches_text, user_query_plus_conversation) or contains_py_filename(matches_text):
            response = head_agent.answering_agent.generate_response(user_query, matches_text, conversation, head_agent.selected_mode)
        else:
            prompt_for_gpt = f"Return a response to this query: {user_query} in the context of this conversation: {conversation}. Please use language appropriate for a {head_agent.selected_mode}."
            response = get_completion(head_agent.openai_client, prompt_for_gpt)
            response = "[EXTERNAL] " + response

        return response

class Answering_Agent:
    def __init__(self, openai_client) -> None:
        self.client = openai_client

    def generate_response(self, query, docs, conv_history, selected_mode):
        prompt_for_gpt = f"Based on this text in angle brackets: <{docs}>, please summarize a response to this query: {query} in the context of this conversation: {conv_history}. Please use language appropriate for a {selected_mode}."
        return get_completion(self.client, prompt_for_gpt)

    def generate_response_topic(self, topic_desc, topic_text, conv_history, selected_mode):
      prompt_for_gpt = f"Please return a summary response on this topic: {topic_desc} using this text as best as possible {topic_text} in the context of this {conv_history}. Please use language appropriate for a {selected_mode}."
      return get_completion(self.client, prompt_for_gpt)

    def generate_image(self, text):
        if DEBUG:
            return None, ""

        dall_e_prompt_from_gpt = f"Based on this text, repeated here in double square brackets for your reference: [[{text}]], please generate a simple caption that I can use with dall-e to generate an instructional image."
        dall_e_text = get_completion(self.client, dall_e_prompt_from_gpt)

        # Write open_ai text
        with open("dall_e_prompts.txt", "a") as f:
          f.write(f"{dall_e_text}\n\n")

        # get image from dall-e
        image = Head_Agent.text_to_image(self.client, dall_e_text)

        # once u have get a caption from GPT
        image_caption_prompt = f"This text in double square brackets is used to prompt dall-e: [[{dall_e_text}]]. Please generate a simple caption that I can use to display with the image dall-e will create. Only return that caption."
        image_caption = get_completion(self.client, image_caption_prompt)
        #st.write(f"image_caption_prompt): {image_caption_prompt}")
        return (image, image_caption)

class Concepts_Agent:
    def __init__(self):
      self._df = pd.read_csv("/content/gdrive/MyDrive/LLM_Winter2024/concepts_final.csv")
      #self.topic_matrix = [[0] * 5 for _ in range(12)]

    def increase_cell(self, i, j):
      st.session_state.topic_matrix[i][j] += + 1

    def display_topic_matrix(self):
      headers = [f"Topic {i}" for i in range(1, 6)]
      row_indices = [f"{self._df['concept'][i-1]}" for i in range(1, 13)]

      topic_df = pd.DataFrame(st.session_state.topic_matrix, row_indices, headers)
      st.table(topic_df)

      st.write(f"Total Topics covered: {sum(sum(row) for row in st.session_state.topic_matrix)}")

    def display_topic_matrix(self):
      headers = [f"Topic {i}" for i in range(1, 6)]
      row_indices = [f"{self._df['concept'][i-1]}" for i in range(1, 13)]

      topic_df = pd.DataFrame(st.session_state.topic_matrix, row_indices, headers)
      st.table(topic_df)

      st.write(f"Total Topics covered: {sum(sum(row) for row in st.session_state.topic_matrix)}")

    def display_topic_matrix_star(self):
        headers = [f"Topic {i}" for i in range(1, 6)]
        row_indices = [f"{self._df['concept'][i-1]}" for i in range(1, 13)]

        # Replace 1 with the Unicode star symbol
        topic_matrix_star = [[chr(9733) if val == 1 else val for val in row] for row in st.session_state.topic_matrix]

        topic_df = pd.DataFrame(topic_matrix_star, row_indices, headers)
        st.table(topic_df)

        st.write(f"Total Topics covered: {sum(sum(row) for row in st.session_state.topic_matrix)}")

    def display_topic_matrix_as_image(self):
      headers = [f"Topic {i}" for i in range(1, 6)]
      row_indices = [f"{self._df['concept'][i-1]}" for i in range(1, 13)]
      topic_df = pd.DataFrame(st.session_state.topic_matrix, row_indices, headers)

      df_html = topic_df.to_html(index=False)

      # Create an image of the HTML table
      image = Image.new("RGB", (800, 600), color="white")  # Define image size
      draw = ImageDraw.Draw(image)
      draw.text((10, 10), df_html, fill="black")  # Position of the table in the image

      # Save the image to a byte stream
      image_byte_array = io.BytesIO()
      image.save(image_byte_array, format="PNG")
      image_byte_array.seek(0)

      # Now you can use the image_byte_array in Streamlit as an image
      st.image(image_byte_array, caption="DataFrame as Image")
      return image_byte_array

    # for each query_embedding, we will look through the df of concepts
    # we'll do a cosine_similarity of that query_embedding with each of the embeddings for each concept
    def find_top_concept_index(self, query_embedding):
      top_sim = 0
      top_concept_index = 0

      for index, row in self._df.iterrows():

        float_array = np.array(ast.literal_eval(row['embedding'])).reshape(1, -1)
        qe_array = np.array(query_embedding).reshape(1, -1)

        sim = cosine_similarity(float_array, qe_array)

        if sim[0][0] > top_sim:
          top_sim = sim[0][0]
          top_concept_index = index

      return top_concept_index

    def get_top_k_text_list(self, matches, k):
      text_list = []
      for i in range(0, k):
          text_list.append(matches.get('matches')[i]['metadata']['text'])
      return text_list

    def write_to_file(self, filename):
        self._df.to_csv(filename, index=False)  # Setting index=False to avoid writing row indices

class Head_Agent:
    def __init__(self, openai_key, pinecone_key) -> None:
        # TODO: Initialize the Head_Agent
        self.openai_key = openai_key
        self.pinecone_key = pinecone_key
        self.selected_mode = ""

        self.openai_client = OpenAI(api_key=self.openai_key)
        self.pc = Pinecone(api_key=self.pinecone_key)
        self.pinecone_index = self.pc.Index("index-600")
        self.pinecone_index_python = self.pc.Index("index-python-files")

        self.query_embedding_local = None
        self.setup_sub_agents()

    def setup_sub_agents(self):
        self.classify_agent = Classify_Agent(self.openai_client)
        self.query_agent = Query_Agent(self.pinecone_index, self.pinecone_index_python, self.openai_client)  # took away embeddings argument since not used
        self.answering_agent = Answering_Agent(self.openai_client)
        self.relevant_documents_agent = Relevant_Documents_Agent(self.openai_client)
        self.ca = Concepts_Agent()

    @staticmethod
    def get_conversation():
        # ... (code for getting conversation history)
        return Head_Agent.get_history_about()

    @staticmethod
    def get_history_about(topic=None):
        history = []

        for message in st.session_state.messages:
            role = message["role"]
            content = message["content"]

            if topic == None:
                if role == "user":
                    history.append(f"{content} ")
            else:
                if message["topic"] == topic:
                    history.append(f"{content} ")

        # st.write(f"user history in get_conversation is {history}")

        if history != None:
            history = history[-2:]

        return history

    @staticmethod
    def text_to_image(openai_client, text):
        model = "dall-e-3"
        size = "512x512"
        with st.spinner("Generating ..."):
          response = openai_client.images.generate(
              model=model,
              prompt = text,
              n=1,
              size="1024x1024"
          )
        image_url = response.data[0].url
        with urllib.request.urlopen(image_url) as image_url:
            img = Image.open(BytesIO(image_url.read()))

        return img

    def get_default_value(self, variable):
        if variable == "openai_model": return "gpt-3.5-turbo"
        elif variable == "messages": return []
        elif variable == "stage": return 0
        elif variable == "query_embedding": return None
        elif variable == "topic_matrix": return [[0] * 5 for _ in range(12)]
        else:
          st.write(f"Error: get_default_value, variable not defined: {variable}")
          return None

    def initialize_session_state(self):
        session_state_variables = ["openai_model", "messages", "stage", "query_embedding", "topic_matrix"]
        for variable in session_state_variables:
            if variable not in st.session_state:
                st.session_state[variable] = self.get_default_value(variable)

    def display_selection_options(self):
        modes = ['college student', 'middle school student', '1st grade student', 'high school student', 'grad student']
        self.selected_mode = st.selectbox("Select your education level:", modes)

    def display_chat_messages(self):
        # Display existing chat messages
        for message in st.session_state.messages:
            if message["role"] == "assistant":
                with st.chat_message("assistant"):
                    st.write(message["content"])
                    if message['image'] != None:
                        st.image(message['image'])
            else:
                with st.chat_message("user"):
                    st.write(message["content"])

    def main_loop(self):
        st.title("Machine Learning Text Guide Chatbot")

        self.initialize_session_state()
        self.display_selection_options()
        self.display_chat_messages()

        ### Wait for user input ###
        if user_query := st.chat_input("What would you like to chat about?"):
            with st.chat_message("user"): st.write(user_query)

            with st.chat_message("assistant"):
                response = ""; topic = None; image = None; caption = ""; st.session_state.stage = 0

                # Get the current conversation with new user query to check for users' intention
                conversation = self.get_conversation()
                user_query_plus_conversation = f"The current query is: {user_query}. The current conversation is: {conversation}"
                classify_query = self.classify_agent.classify_query(user_query_plus_conversation)

                if classify_query == general_greeting_num:
                    response = "How can I assist you today?"
                elif classify_query == general_question_num:
                    response = "Please ask a question about Machine Learning or Python Code."
                elif classify_query == obnoxious_num:
                    response = "Please dont be obnoxious."
                elif classify_query == progress_num:
                    self.ca.display_topic_matrix_star()
                elif classify_query == default_num:
                    response = "I'm not sure how to respond to that."
                elif classify_query == machine_learning_num:
                    response = self.query_agent.process_query_response(self, user_query, 'ml')
                    st.session_state.query_embedding = self.query_agent.get_openai_embedding(user_query)
                    image, caption = self.answering_agent.generate_image(response)
                    topic = "ml"
                    st.session_state.stage = 1
                elif classify_query == python_code_num:
                    response = self.query_agent.process_query_response(self, user_query, 'python')
                    image, caption = self.answering_agent.generate_image(response)
                    topic = "python"
                    st.session_state.stage = 0
                else:
                    response = "I'm not sure how to respond to that."

                # ... (get AI response and display it)
                st.write(response)
                if image and caption != "": st.image(image, caption)

                st.session_state.messages.append({"role": "user", "content": user_query, "topic": topic, "image": None})
                st.session_state.messages.append({"role": "assistant", "content": response, "topic": topic, "image": image})

        if st.session_state.stage == 1: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###

            # it looks like after we hit st.button, we go back to the top of the st.session_state.stage == 1 loop, and we lose the query_embedding_local

            # we use st.session_state.query_embedding to get the concept index
            top_concept_index = self.ca.find_top_concept_index(st.session_state.query_embedding)
            concept_name = self.ca._df['concept'][top_concept_index]

            st.write(f"Your question is associated to the Fundamental Concept in Machine Learning: {concept_name}.\n\n")
            st.write(f"Here are some topics you can explore to help you learn about {concept_name}, pick one.")

            response = ""; image = None; topic = ""
            topic0_desc = self.ca._df['topic_0_desc'][top_concept_index]
            topic1_desc = self.ca._df['topic_1_desc'][top_concept_index]
            topic2_desc = self.ca._df['topic_2_desc'][top_concept_index]
            topic3_desc = self.ca._df['topic_3_desc'][top_concept_index]
            topic4_desc = self.ca._df['topic_4_desc'][top_concept_index]

            matrix_row = st.session_state.topic_matrix[top_concept_index]

            if (matrix_row[0] == 0 and st.session_state.stage):
                if st.button(topic0_desc): process_button_click(self, 0, topic0_desc, top_concept_index)
            if (matrix_row[1] == 0 and st.session_state.stage):
                if st.button(topic1_desc): process_button_click(self, 1, topic1_desc, top_concept_index)
            if (matrix_row[2] == 0 and st.session_state.stage):
                if st.button(topic2_desc): process_button_click(self, 2, topic2_desc, top_concept_index)
            if (matrix_row[3] == 0 and st.session_state.stage):
                if st.button(topic3_desc): process_button_click(self, 3, topic3_desc, top_concept_index)
            if (matrix_row[4] == 0 and st.session_state.stage):
                if st.button(topic4_desc): process_button_click(self, 4, topic4_desc, top_concept_index)

def process_button_click(head, button_index, topic_desc, top_concept_index):
    with st.chat_message("user"): st.write(topic_desc)

    # we then assign to st.session_state.query_embedding the embedding for the topic_desc
    st.session_state.query_embedding = head.query_agent.get_openai_embedding(topic_desc)

    topic_text_index = 'topic_' + str(button_index)
    topic_text = head.ca._df[topic_text_index][top_concept_index]

    response = head.answering_agent.generate_response_topic(topic_desc, topic_text, head.get_conversation(), head.selected_mode)
    image, caption = head.answering_agent.generate_image(topic_text)
    topic = topic_desc

    st.session_state.topic_matrix[top_concept_index][button_index] += 1

    st.write(response)
    if image and caption != "": st.image(image, caption)

    # ... (add response & image to message)
    st.session_state.messages.append({"role": "user", "content": topic_desc, "topic": "ml", "image": None})
    st.session_state.messages.append({"role": "assistant", "content": response, "topic": topic, "image": image})

    st.session_state.stage = 0


if __name__ == "__main__":
  head_agent = Head_Agent(OPENAI_KEY, pc_apikey)
  DEBUG = False

  head_agent.main_loop()
  #main()