lordsquirrel
commited on
Commit
•
3dd905b
1
Parent(s):
7c6b981
Flagging
Browse files- demo.py +17 -4
- model-gym.ipynb +0 -0
- model-test.ipynb +20 -7
demo.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: model-test.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
-
__all__ = ['plt', 'learn', 'categories', 'image', 'label', 'examples', 'iface', 'is_albani', 'classify_image']
|
5 |
|
6 |
# %% model-test.ipynb 2
|
7 |
from fastai.vision.all import *
|
@@ -21,10 +21,23 @@ def classify_image(img):
|
|
21 |
pred,idx,probs = learn.predict(img)
|
22 |
return dict(zip(categories, map(float, probs)))
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
examples = ['albani.jpg', 'albani2.jpg', 'heineken.jpg', 'carlsberg.jpg']
|
27 |
|
28 |
-
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
iface.launch(inline=False)
|
30 |
|
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: model-test.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
+
__all__ = ['plt', 'learn', 'categories', 'title', 'image', 'label', 'examples', 'iface', 'is_albani', 'classify_image']
|
5 |
|
6 |
# %% model-test.ipynb 2
|
7 |
from fastai.vision.all import *
|
|
|
21 |
pred,idx,probs = learn.predict(img)
|
22 |
return dict(zip(categories, map(float, probs)))
|
23 |
|
24 |
+
title = """
|
25 |
+
## Er du i tvivl om at den øl du sidder med i hånden lige nu er god?
|
26 |
+
Tvivl ej 68 års invotation inden for machine learning skal nok fortælle dig om øllen er god eller ej
|
27 |
+
"""
|
28 |
+
image = gr.Image(shape=(192, 192))
|
29 |
+
label = gr.Label()
|
30 |
examples = ['albani.jpg', 'albani2.jpg', 'heineken.jpg', 'carlsberg.jpg']
|
31 |
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=classify_image,
|
34 |
+
inputs=image,
|
35 |
+
outputs=label,
|
36 |
+
examples=examples,
|
37 |
+
description=title,
|
38 |
+
allow_flagging="manual",
|
39 |
+
flagging_options=["wrong", "ambiguous"]
|
40 |
+
)
|
41 |
+
|
42 |
iface.launch(inline=False)
|
43 |
|
model-gym.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
model-test.ipynb
CHANGED
@@ -75,14 +75,14 @@
|
|
75 |
},
|
76 |
{
|
77 |
"cell_type": "code",
|
78 |
-
"execution_count":
|
79 |
"metadata": {},
|
80 |
"outputs": [
|
81 |
{
|
82 |
"name": "stdout",
|
83 |
"output_type": "stream",
|
84 |
"text": [
|
85 |
-
"Running on local URL: http://127.0.0.1:
|
86 |
"\n",
|
87 |
"To create a public link, set `share=True` in `launch()`.\n"
|
88 |
]
|
@@ -91,7 +91,7 @@
|
|
91 |
"data": {
|
92 |
"text/plain": []
|
93 |
},
|
94 |
-
"execution_count":
|
95 |
"metadata": {},
|
96 |
"output_type": "execute_result"
|
97 |
},
|
@@ -113,11 +113,24 @@
|
|
113 |
" pred,idx,probs = learn.predict(img)\n",
|
114 |
" return dict(zip(categories, map(float, probs)))\n",
|
115 |
"\n",
|
116 |
-
"
|
117 |
-
"
|
|
|
|
|
|
|
|
|
118 |
"examples = ['albani.jpg', 'albani2.jpg', 'heineken.jpg', 'carlsberg.jpg']\n",
|
119 |
"\n",
|
120 |
-
"iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
"iface.launch(inline=False)\n"
|
122 |
]
|
123 |
},
|
@@ -131,7 +144,7 @@
|
|
131 |
},
|
132 |
{
|
133 |
"cell_type": "code",
|
134 |
-
"execution_count":
|
135 |
"metadata": {},
|
136 |
"outputs": [
|
137 |
{
|
|
|
75 |
},
|
76 |
{
|
77 |
"cell_type": "code",
|
78 |
+
"execution_count": 40,
|
79 |
"metadata": {},
|
80 |
"outputs": [
|
81 |
{
|
82 |
"name": "stdout",
|
83 |
"output_type": "stream",
|
84 |
"text": [
|
85 |
+
"Running on local URL: http://127.0.0.1:7870\n",
|
86 |
"\n",
|
87 |
"To create a public link, set `share=True` in `launch()`.\n"
|
88 |
]
|
|
|
91 |
"data": {
|
92 |
"text/plain": []
|
93 |
},
|
94 |
+
"execution_count": 40,
|
95 |
"metadata": {},
|
96 |
"output_type": "execute_result"
|
97 |
},
|
|
|
113 |
" pred,idx,probs = learn.predict(img)\n",
|
114 |
" return dict(zip(categories, map(float, probs)))\n",
|
115 |
"\n",
|
116 |
+
"title = \"\"\"\n",
|
117 |
+
" ## Er du i tvivl om at den øl du sidder med i hånden lige nu er god? \n",
|
118 |
+
" Tvivl ej 68 års invotation inden for machine learning skal nok fortælle dig om øllen er god eller ej\n",
|
119 |
+
"\"\"\"\n",
|
120 |
+
"image = gr.Image(shape=(192, 192))\n",
|
121 |
+
"label = gr.Label()\n",
|
122 |
"examples = ['albani.jpg', 'albani2.jpg', 'heineken.jpg', 'carlsberg.jpg']\n",
|
123 |
"\n",
|
124 |
+
"iface = gr.Interface(\n",
|
125 |
+
" fn=classify_image, \n",
|
126 |
+
" inputs=image, \n",
|
127 |
+
" outputs=label, \n",
|
128 |
+
" examples=examples, \n",
|
129 |
+
" description=title, \n",
|
130 |
+
" allow_flagging=\"manual\", \n",
|
131 |
+
" flagging_options=[\"wrong\", \"ambiguous\"]\n",
|
132 |
+
")\n",
|
133 |
+
"\n",
|
134 |
"iface.launch(inline=False)\n"
|
135 |
]
|
136 |
},
|
|
|
144 |
},
|
145 |
{
|
146 |
"cell_type": "code",
|
147 |
+
"execution_count": 41,
|
148 |
"metadata": {},
|
149 |
"outputs": [
|
150 |
{
|