Spaces:
Sleeping
Sleeping
File size: 12,738 Bytes
79b94f8 f76e4eb 79b94f8 6d16da3 79b94f8 aec1dec 79b94f8 f76e4eb 79b94f8 2abcb58 79b94f8 f76e4eb aec1dec f76e4eb aec1dec 359769b aec1dec f76e4eb aec1dec f76e4eb aec1dec f76e4eb e9d1d9f aec1dec 79b94f8 f76e4eb 79b94f8 f76e4eb 79b94f8 f76e4eb 79b94f8 f76e4eb 79b94f8 f76e4eb 79b94f8 f76e4eb aec1dec f76e4eb 79b94f8 359769b 79b94f8 aec1dec 79b94f8 aec1dec 359769b 79b94f8 2abcb58 79b94f8 2abcb58 e9d1d9f 79b94f8 e9d1d9f 2abcb58 e9d1d9f 79b94f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# Streamlit classes
import streamlit as st
from streamlit_agraph import agraph, Node, Edge, Config
from streamlit_chat import message
# Data manipulation and embeddings
import pandas as pd
import numpy as np
import openai
from openai.embeddings_utils import distances_from_embeddings
import whisper
# Exec tasks
import os, json
import math
import re
from threading import Thread
# Custom classes
from transcription import *
from keywords import Keywords
from summary import TextSummarizer
from takeaways import KeyTakeaways
from mindmap import MindMap
import models as md
def get_initial_message():
messages=[
{"role": "system", "content": "You are a helpful AI Tutor. Who anwers brief questions about AI."},
{"role": "user", "content": "I want to learn AI"},
{"role": "assistant", "content": "Thats awesome, what do you want to know aboout AI"}
]
return messages
REGEXP_YOUTUBE_URL = "^(https?\:\/\/)?((www\.)?youtube\.com|youtu\.be)\/.+$"
model = whisper.load_model('base')
output = ''
data = []
data_transcription = {"title":"", "text":""}
embeddings = []
text_chunks_lib = dict()
user_input = None
title_entry = ""
tldr = ""
summary = ""
takeaways = []
keywords = []
folder_name = "./tests"
input_accepted = False
is_completed_analysis = False
if not os.path.exists(folder_name):
os.mkdir(folder_name)
user_secret = os.getenv("OPENAI_API_KEY")
# Define the purpose of the application
st.header('Almithal')
st.subheader('Almithal is a comprehensive video and PDF study buddy.')
st.write('It provides a summary, transcription, key insights, a mind map and a Q&A feature where you can actually "talk" to the datasource.')
bar = st.progress(0)
def generate_word_embeddings():
global data
if not os.path.exists(f"{folder_name}/word_embeddings.csv"):
for i, segment in enumerate(segments):
bar.progress(max(math.ceil((i/len(segments) * 50)), 1))
response = openai.Embedding.create(
input= segment["text"].strip(),
model="text-embedding-ada-002"
)
embeddings = response['data'][0]['embedding']
meta = {
"text": segment["text"].strip(),
"embedding": embeddings
}
data.append(meta)
pd.DataFrame(data).to_csv(f'{folder_name}/word_embeddings.csv')
else:
data = pd.read_csv(f'{folder_name}/word_embeddings.csv')
def generate_text_chunks_lib():
global data_transcription
global title_entry, text_chunks_lib
global keywords
global tldr
global summary
global takeaways
global input_accepted
# For each body of text, create text chunks of a certain token size required for the transformer
text_df = pd.DataFrame.from_dict({"title": [data_transcription["title"]], "text":[data_transcription["text"]]})
input_accepted = True
title_entry = text_df['title'][0]
print("\n\nFIRST TITLE_ENTRY", title_entry)
for i in range(0, len(text_df)):
nested_sentences = md.create_nest_sentences(document=text_df['text'][i], token_max_length=1024)
# For each chunk of sentences (within the token max)
text_chunks = []
for n in range(0, len(nested_sentences)):
tc = " ".join(map(str, nested_sentences[n]))
text_chunks.append(tc)
text_chunks_lib[title_entry] = text_chunks
# Generate key takeaways
key_engine = Keywords(title_entry)
keywords = key_engine.get_keywords(text_chunks_lib)
# =========== SIDEBAR FOR GENERATION ===========
with st.sidebar:
youtube_link = st.text_input(label = "Type in your Youtube link", placeholder = "", key="url")
st.markdown("OR")
pdf_file = st.file_uploader("Upload your PDF", type="pdf")
st.markdown("OR")
audio_file = st.file_uploader("Upload your MP3 audio file", type=["wav", "mp3"])
gen_keywords = st.radio(
"Generate keywords from text?",
('Yes', 'No')
)
gen_summary = st.radio(
"Generate summary from text? (recommended for label matching below, but will take longer)",
('Yes', 'No')
)
if st.button("Start Analysis"):
# Youtube Transcription
if re.search(REGEXP_YOUTUBE_URL, youtube_link):
vte = VideoTranscription(youtube_link)
YOUTUBE_VIDEO_ID = youtube_link.split("=")[1]
folder_name = f"./tests/{YOUTUBE_VIDEO_ID}"
if not os.path.exists(folder_name):
os.mkdir(folder_name)
with st.spinner('Running transcription...'):
data_transcription = vte.transcribe()
segments = data_transcription['segments']
# PDF Transcription
elif pdf_file is not None:
pte = PDFTranscription(pdf_file)
folder_name = pte.get_redacted_name()
if not os.path.exists(folder_name):
os.mkdir(folder_name)
with st.spinner('Running transcription...'):
data_transcription = pte.transcribe()
segments = data_transcription['segments']
# Audio transcription
elif audio_file is not None:
ate = AudioTranscription(audio_file)
folder_name = ate.get_redacted_name()
if not os.path.exists(f""):
os.mkdir(folder_name)
with st.spinner('Running transcription...'):
data_transcription = ate.transcribe()
segments = data_transcription['segments']
with open(f"{folder_name}/data.json", "w") as f:
json.dump(data_transcription, f, indent=4)
else:
st.error("Please type in your youtube link or upload the PDF")
st.experimental_rerun()
# Generate embeddings
thread1 = Thread(target=generate_word_embeddings)
thread1.start()
# Generate text chunks
thread2 = Thread(target=generate_text_chunks_lib)
thread2.start()
# Wait for them to complete
thread1.join()
thread2.join()
def generate_summary():
pass
def generate_key_takeaways():
pass
threadSum = Thread(target=generate_summary)
threadTak = Thread(target=generate_key_takeaways)
# Generate the summary
if gen_summary == 'Yes':
se = TextSummarizer(title_entry)
text_transcription = data_transcription['text']
with st.spinner("Generating summary and TLDR..."):
summary = se.generate_full_summary(text_chunks_lib)
summary_list = summary.split("\n\n")
tldr = se.generate_short_summary(summary_list)
# Generate key takeaways
kt = KeyTakeaways()
with st.spinner("Generating key takeaways ... "):
takeaways = kt.generate_key_takeaways(text_chunks_lib)
is_completed_analysis = True
bar.progress(100)
with open(f"{folder_name}/data.json", "w") as f:
json.dump(data_transcription, f, indent=4)
if is_completed_analysis:
st.header("Key Takeaways")
st.write("Here are some of the key takeaways from the data:")
for takeaway in takeaways:
st.markdown(f"- {takeaway}")
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Introduction", "Summary", "Transcription", "Mind Map", "Keywords", "Q&A"])
# =========== INTRODUCTION ===========
with tab1:
st.markdown("## How do I use this?")
st.markdown("Do one of the following")
st.markdown('* Type in your youtube URL that you want worked on')
st.markdown('* Place the PDF file that you want worked on')
st.markdown('* Place the audio file that you want worked on')
st.markdown("**Once the file / url has finished saving, a 'Start Analysis' button will appear. Click on this button to begin the note generation**")
st.warning("NOTE: This is just a demo product in alpha testing. Any and all bugs will soon be fixed")
st.warning("After the note taking is done, you will see multiple tabs for more information")
# =========== SUMMARIZATION ===========
with tab2:
if is_completed_analysis:
st.header("TL;DR")
for point in tldr:
st.markdown(f"- {point}")
st.header("Summary")
st.write(summary)
else:
st.warning("Please wait for the analysis to finish")
# =========== TRANSCRIPTION ===========
with tab3:
st.header("Transcription")
if is_completed_analysis:
with st.spinner("Generating transcript ..."):
st.write("")
for text in text_chunks_lib[title_entry]:
st.write(text)
else:
st.warning("Please wait for the analysis to finish")
# =========== MIND MAP ===========
with tab4:
st.header("Mind Map")
if is_completed_analysis:
mindmap = MindMap()
with st.spinner("Generating mind map..."):
mindmap.generate_graph(text_chunks_lib)
else:
st.warning("Please wait for the analysis to finish")
# =========== KEYWORDS ===========
with tab5:
st.header("Keywords:")
if is_completed_analysis and gen_keywords:
for i, keyword in enumerate(keywords):
st.markdown(f"{i+1}. {keyword}")
else:
st.warning("Please wait for the analysis to finish")
# =========== QUERY BOT ===========
with tab6:
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
def get_text():
st.header("Ask me something about the video:")
input_text = st.text_input("You: ", key="prompt")
return input_text
def get_embedding_text(prompt):
response = openai.Embedding.create(
input= prompt.strip(),
model="text-embedding-ada-002"
)
q_embedding = response['data'][0]['embedding']
print("the folder name at got here 1.5 is ", folder_name)
# df = pd.read_csv(f'{folder_name}/word_embeddings.csv', index_col=0)
data['embedding'] = data['embedding'].apply(eval).apply(np.array)
data['distances'] = distances_from_embeddings(q_embedding, data['embedding'].values, distance_metric='cosine')
returns = []
# Sort by distance with 2 hints
for i, row in data.sort_values('distances', ascending=True).head(4).iterrows():
# Else add it to the text that is being returned
returns.append(row["text"])
# Return the context
return "\n\n###\n\n".join(returns)
def generate_response(prompt):
one_shot_prompt = '''
I am YoutubeGPT, a highly intelligent question answering bot.
If you ask me a question that is rooted in truth, I will give you the answer.
Q: What is human life expectancy in the United States?
A: Human life expectancy in the United States is 78 years.
Q: '''+prompt+'''
A:
'''
completions = openai.Completion.create(
engine = "text-davinci-003",
prompt = one_shot_prompt,
max_tokens = 1024,
n = 1,
stop=["Q:"],
temperature=0.5,
)
message = completions.choices[0].text
return message
user_input = get_text()
print("user input is ", user_input)
print("the folder name at got here 0.5 is ", folder_name)
if user_input:
print("got here 1")
print("the folder name at got here 1.5 is ", folder_name)
text_embedding = get_embedding_text(user_input)
print("the folder name at got here 1.5 is ", folder_name)
print("got here 2")
title = data_transcription['title']
string_title = "\n\n###\n\n".join(title)
user_input_embedding = 'Using this context: "'+string_title+'. '+text_embedding+'", answer the following question. \n'+user_input
print("got here 3")
output = generate_response(user_input_embedding)
st.session_state.past.append(user_input)
st.session_state.generated.append(output)
if st.session_state['generated']:
for i in range(len(st.session_state['generated'])-1, -1, -1):
message(st.session_state["generated"][i], key=str(i))
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
# st.header("What else") |