File size: 12,738 Bytes
79b94f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f76e4eb
79b94f8
 
 
 
 
 
 
 
 
6d16da3
 
 
 
 
 
 
79b94f8
 
 
 
 
 
 
 
 
 
 
aec1dec
79b94f8
 
 
 
f76e4eb
79b94f8
 
 
 
2abcb58
 
79b94f8
 
 
 
 
 
 
 
 
 
f76e4eb
aec1dec
 
f76e4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aec1dec
359769b
aec1dec
 
 
 
 
 
f76e4eb
 
aec1dec
 
f76e4eb
aec1dec
f76e4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d1d9f
aec1dec
79b94f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f76e4eb
79b94f8
 
 
 
 
 
 
f76e4eb
79b94f8
 
f76e4eb
79b94f8
 
 
 
 
 
 
f76e4eb
79b94f8
 
 
 
 
 
 
 
 
 
f76e4eb
79b94f8
 
 
 
 
 
 
 
 
 
 
f76e4eb
 
 
aec1dec
f76e4eb
 
 
 
 
 
 
79b94f8
359769b
 
 
 
 
 
 
 
 
79b94f8
 
 
 
 
 
 
 
aec1dec
79b94f8
 
 
 
aec1dec
 
359769b
 
 
79b94f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abcb58
79b94f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abcb58
e9d1d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b94f8
e9d1d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abcb58
e9d1d9f
 
 
 
79b94f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Streamlit classes
import streamlit as st
from streamlit_agraph import agraph, Node, Edge, Config
from streamlit_chat import message

# Data manipulation and embeddings
import pandas as pd
import numpy as np
import openai
from openai.embeddings_utils import distances_from_embeddings
import whisper

# Exec tasks
import os, json
import math
import re
from threading import Thread

# Custom classes 
from transcription import *
from keywords import Keywords
from summary import TextSummarizer
from takeaways import KeyTakeaways
from mindmap import MindMap
import models as md

def get_initial_message():
    messages=[
            {"role": "system", "content": "You are a helpful AI Tutor. Who anwers brief questions about AI."},
            {"role": "user", "content": "I want to learn AI"},
            {"role": "assistant", "content": "Thats awesome, what do you want to know aboout AI"}
        ]
    return messages

REGEXP_YOUTUBE_URL = "^(https?\:\/\/)?((www\.)?youtube\.com|youtu\.be)\/.+$"

model = whisper.load_model('base')

output = ''
data = []
data_transcription = {"title":"", "text":""}
embeddings = []
text_chunks_lib = dict()
user_input = None
title_entry = ""

tldr = ""
summary = ""
takeaways = []
keywords = []

folder_name = "./tests"
input_accepted = False
is_completed_analysis = False
if not os.path.exists(folder_name):
    os.mkdir(folder_name)

user_secret = os.getenv("OPENAI_API_KEY")

# Define the purpose of the application
st.header('Almithal')
st.subheader('Almithal is a comprehensive video and PDF study buddy.')
st.write('It provides a summary, transcription, key insights, a mind map and a Q&A feature where you can actually "talk" to the datasource.')

bar = st.progress(0)

def generate_word_embeddings():
    global data
    
    if not os.path.exists(f"{folder_name}/word_embeddings.csv"):
        for i, segment in enumerate(segments):
            bar.progress(max(math.ceil((i/len(segments) * 50)), 1))
            response = openai.Embedding.create(
                input= segment["text"].strip(),
                model="text-embedding-ada-002"
            )
            embeddings = response['data'][0]['embedding']
            meta = {
                "text": segment["text"].strip(),
                "embedding": embeddings
            }
            data.append(meta)
        
        pd.DataFrame(data).to_csv(f'{folder_name}/word_embeddings.csv') 
    else:   
        data = pd.read_csv(f'{folder_name}/word_embeddings.csv')

  
def generate_text_chunks_lib():
    
    global data_transcription
    global title_entry, text_chunks_lib
    global keywords
    global tldr
    global summary
    global takeaways
    global input_accepted
    
    # For each body of text, create text chunks of a certain token size required for the transformer
    text_df = pd.DataFrame.from_dict({"title": [data_transcription["title"]], "text":[data_transcription["text"]]})
    input_accepted = True
    title_entry = text_df['title'][0]
    print("\n\nFIRST TITLE_ENTRY", title_entry)
    for i in range(0, len(text_df)):
        nested_sentences = md.create_nest_sentences(document=text_df['text'][i], token_max_length=1024)
        # For each chunk of sentences (within the token max)
        text_chunks = []
        for n in range(0, len(nested_sentences)):
            tc = " ".join(map(str, nested_sentences[n]))
            text_chunks.append(tc)
        
        text_chunks_lib[title_entry] = text_chunks    
    
    # Generate key takeaways 
    key_engine = Keywords(title_entry)
    keywords = key_engine.get_keywords(text_chunks_lib)



# =========== SIDEBAR FOR GENERATION ===========
with st.sidebar:
    youtube_link = st.text_input(label = "Type in your Youtube link", placeholder = "", key="url")
    st.markdown("OR")
    pdf_file = st.file_uploader("Upload your PDF", type="pdf")
    st.markdown("OR")
    audio_file = st.file_uploader("Upload your MP3 audio file", type=["wav", "mp3"])
    
    gen_keywords = st.radio(
        "Generate keywords from text?",
        ('Yes', 'No')
    )

    gen_summary = st.radio(
        "Generate summary from text? (recommended for label matching below, but will take longer)",
        ('Yes', 'No')
    )
    
    if st.button("Start Analysis"):
        
        # Youtube Transcription
        if re.search(REGEXP_YOUTUBE_URL, youtube_link):
            vte = VideoTranscription(youtube_link)
            YOUTUBE_VIDEO_ID = youtube_link.split("=")[1]
            folder_name = f"./tests/{YOUTUBE_VIDEO_ID}"
            if not os.path.exists(folder_name):
                os.mkdir(folder_name)
            
            with st.spinner('Running transcription...'):
                data_transcription = vte.transcribe()                    
                segments = data_transcription['segments']
                             
        # PDF Transcription 
        elif pdf_file is not None:
            pte = PDFTranscription(pdf_file)
            folder_name = pte.get_redacted_name()
            if not os.path.exists(folder_name):
                os.mkdir(folder_name)
            
            with st.spinner('Running transcription...'):
                data_transcription = pte.transcribe()
                segments = data_transcription['segments']
        
        # Audio transcription
        elif audio_file is not None:
            ate = AudioTranscription(audio_file)
            folder_name = ate.get_redacted_name()
            if not os.path.exists(f""):
                os.mkdir(folder_name)
            
            with st.spinner('Running transcription...'):
                data_transcription = ate.transcribe()
                segments = data_transcription['segments']
            
            with open(f"{folder_name}/data.json", "w") as f:
                json.dump(data_transcription, f, indent=4)
                
        else:
            st.error("Please type in your youtube link or upload the PDF")  
            st.experimental_rerun()
        
        
        # Generate embeddings
        thread1 = Thread(target=generate_word_embeddings)
        thread1.start()
        
        # Generate text chunks 
        thread2 = Thread(target=generate_text_chunks_lib)
        thread2.start()
        
        # Wait for them to complete 
        thread1.join()
        thread2.join()
        
        def generate_summary():
            pass
        
        def generate_key_takeaways():
            pass
        
        threadSum = Thread(target=generate_summary)
        threadTak = Thread(target=generate_key_takeaways)
        
        # Generate the summary
        if gen_summary == 'Yes':
            se = TextSummarizer(title_entry)
            text_transcription = data_transcription['text']
            with st.spinner("Generating summary and TLDR..."):
                summary = se.generate_full_summary(text_chunks_lib)
                summary_list = summary.split("\n\n")
                tldr = se.generate_short_summary(summary_list)
    
        # Generate key takeaways
        kt = KeyTakeaways()
        with st.spinner("Generating key takeaways ... "):
            takeaways = kt.generate_key_takeaways(text_chunks_lib)
            is_completed_analysis = True
            bar.progress(100)
            
        with open(f"{folder_name}/data.json", "w") as f:
            json.dump(data_transcription, f, indent=4)

if is_completed_analysis:
    st.header("Key Takeaways")
    st.write("Here are some of the key takeaways from the data:")
    for takeaway in takeaways:
        st.markdown(f"- {takeaway}")


tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Introduction", "Summary", "Transcription", "Mind Map", "Keywords", "Q&A"])

# =========== INTRODUCTION ===========
with tab1:
    st.markdown("## How do I use this?")
    st.markdown("Do one of the following")
    st.markdown('* Type in your youtube URL that you want worked on')
    st.markdown('* Place the PDF file that you want worked on')
    st.markdown('* Place the audio file that you want worked on')
    st.markdown("**Once the file / url has finished saving, a 'Start Analysis' button will appear. Click on this button to begin the note generation**")
    st.warning("NOTE: This is just a demo product in alpha testing. Any and all bugs will soon be fixed")
    st.warning("After the note taking is done, you will see multiple tabs for more information")

# =========== SUMMARIZATION ===========
with tab2: 
    if is_completed_analysis:
        st.header("TL;DR")
        for point in tldr:
            st.markdown(f"- {point}")
        st.header("Summary")
        st.write(summary)
    else:
        st.warning("Please wait for the analysis to finish")

# =========== TRANSCRIPTION ===========
with tab3:
    st.header("Transcription")
    if is_completed_analysis:
        with st.spinner("Generating transcript ..."):
            st.write("")
            for text in text_chunks_lib[title_entry]:
                st.write(text)
    else:
        st.warning("Please wait for the analysis to finish")

# =========== MIND MAP ===========
with tab4:
    st.header("Mind Map")
    if is_completed_analysis:
        mindmap = MindMap()
        with st.spinner("Generating mind map..."):
            mindmap.generate_graph(text_chunks_lib)
    else:
        st.warning("Please wait for the analysis to finish")

# =========== KEYWORDS ===========
with tab5:
    st.header("Keywords:")
    if is_completed_analysis and gen_keywords:
        for i, keyword in enumerate(keywords):
            st.markdown(f"{i+1}. {keyword}")
    else:
        st.warning("Please wait for the analysis to finish")

# =========== QUERY BOT ===========
with tab6:
    
    if 'generated' not in st.session_state:
        st.session_state['generated'] = []

    if 'past' not in st.session_state:
        st.session_state['past'] = []

    def get_text():
        st.header("Ask me something about the video:")
        input_text = st.text_input("You: ", key="prompt")
        return input_text


    def get_embedding_text(prompt):
        response = openai.Embedding.create(
            input= prompt.strip(),
            model="text-embedding-ada-002"
        )
        q_embedding = response['data'][0]['embedding']
        print("the folder name at got here 1.5 is ", folder_name)
        # df = pd.read_csv(f'{folder_name}/word_embeddings.csv', index_col=0)
        data['embedding'] = data['embedding'].apply(eval).apply(np.array)

        data['distances'] = distances_from_embeddings(q_embedding, data['embedding'].values, distance_metric='cosine')
        returns = []
        
        # Sort by distance with 2 hints
        for i, row in data.sort_values('distances', ascending=True).head(4).iterrows():
            # Else add it to the text that is being returned
            returns.append(row["text"])

        # Return the context
        return "\n\n###\n\n".join(returns)

    def generate_response(prompt):
        one_shot_prompt = '''
            I am YoutubeGPT, a highly intelligent question answering bot.
            If you ask me a question that is rooted in truth, I will give you the answer.
            Q: What is human life expectancy in the United States?
            A: Human life expectancy in the United States is 78 years.
            Q: '''+prompt+'''
            A: 
        '''
        completions = openai.Completion.create(
            engine = "text-davinci-003",
            prompt = one_shot_prompt,
            max_tokens = 1024,
            n = 1,
            stop=["Q:"],
            temperature=0.5,
        )
        message = completions.choices[0].text
        return message
    
    
    user_input = get_text()
    print("user input is ", user_input)
    print("the folder name at got here 0.5 is ", folder_name)    
    
    if user_input:
        print("got here 1")
        print("the folder name at got here 1.5 is ", folder_name)
        text_embedding = get_embedding_text(user_input)
        print("the folder name at got here 1.5 is ", folder_name)
        print("got here 2")
        title = data_transcription['title']
        string_title = "\n\n###\n\n".join(title)
        user_input_embedding = 'Using this context: "'+string_title+'. '+text_embedding+'", answer the following question. \n'+user_input
        print("got here 3")
        output = generate_response(user_input_embedding)
        st.session_state.past.append(user_input)
        st.session_state.generated.append(output)
        
    if st.session_state['generated']:
        for i in range(len(st.session_state['generated'])-1, -1, -1):
            message(st.session_state["generated"][i], key=str(i))
            message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')


# st.header("What else")