import models as md import nltk from threading import Thread import openai import os nltk.download("punkt") class TextSummarizer: def __init__(self, title): self.title = title self.model = "gpt-3.5-turbo" self.summarizer = md.load_summary_model() openai.api_key = os.getenv("OPENAI_API_KEY") def generate_short_summary(self, summary_chunks:dict) -> list: PROMPT = """ You are a helpful assistant that summarizes youtube videos. Someone has already summarized the video to key points. Summarize the key points in at most two sentences that capture the essence of the passage. """ final_summary = [] for summary_chunk in summary_chunks: response = openai.ChatCompletion.create( model=self.model, messages=[ {"role": "system", "content": PROMPT}, {"role": "user", "content": summary_chunk}, ], ) summary = response["choices"][0]["message"]["content"] final_summary.append(summary) return final_summary def generate_full_summary(self, text_chunks_lib:dict) -> str: sum_dict = dict() chunk_summaries = [] def generate_chunk_summary(text_chunk:str, i: int) -> str: chunk_summary = md.summarizer_gen(self.summarizer, sequence=text_chunk, maximum_tokens=500, minimum_tokens=100) chunk_summaries[i] = chunk_summary for _, key in enumerate(text_chunks_lib): summary = [] threads = [] # make the chunk summaries in parallel chunk_summaries = [None] * len(text_chunks_lib[key]) for i, text_chunk in enumerate(text_chunks_lib[key]): threads.append(Thread(target=generate_chunk_summary, args=(text_chunk, i))) for thread in threads: thread.start() for thread in threads: thread.join() final_summary = "\n\n".join(chunk_summaries) sum_dict[key] = [final_summary] return sum_dict[self.title][0]