text-matching / utils.py
Keane Moraes
updates on quality of life and output changes
ca564a1
import streamlit as st
from keybert import KeyBERT
import nltk
from nltk.corpus import stopwords
from transformers import AutoTokenizer
import os, re, json
import openai
import spacy
import en_core_web_sm
from sklearn.cluster import KMeans, AgglomerativeClustering
import numpy as np
from sentence_transformers import SentenceTransformer
MODEL = 'all-MiniLM-L6-v2'
nltk.download('stopwords')
@st.cache_data
def load_autotoken():
autotok = AutoTokenizer.from_pretrained('facebook/bart-large-mnli')
return autotok
@st.cache_data
def load_keyword_model():
sentence_model = load_model()
kw_model = KeyBERT(model=sentence_model)
return kw_model
@st.cache_data
def load_model():
embedder = SentenceTransformer(MODEL)
return embedder
@st.cache_data
def load_nlp():
nlp = en_core_web_sm.load()
return nlp
def create_nest_sentences(document:str, token_max_length = 1023):
nested = []
sent = []
length = 0
tokenizer = load_autotoken()
for sentence in re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', document.replace("\n", '.')):
tokens_in_sentence = tokenizer(str(sentence), truncation=False, padding=False)[0] # hugging face transformer tokenizer
length += len(tokens_in_sentence)
if length < token_max_length:
sent.append(sentence)
else:
nested.append(sent)
sent = [sentence]
length = 0
if sent:
nested.append(sent)
return nested
def preprocess(text) -> str:
stop_words = set(stopwords.words("english"))
text = text.lower()
# text = ''.join([c for c in text if c not in ('!', '.', ',', '?', ':', ';', '"', "'", '-', '(', ')')])
words = text.split()
words = [w for w in words if not w in stop_words]
return " ".join(words)
def generate_keywords(kw_model, document: str) -> list:
atomic_extractions = kw_model.extract_keywords(document, keyphrase_ngram_range=(1, 1), stop_words=None, use_maxsum=True, nr_candidates=20, top_n=10)
complex_extractions = kw_model.extract_keywords(document, keyphrase_ngram_range=(1, 2), stop_words=None, use_maxsum=True, nr_candidates=20, top_n=10)
final_topics = []
for extraction in atomic_extractions:
final_topics.append(extraction[0])
for extraction in complex_extractions:
final_topics.append(extraction[0])
return final_topics
def cluster_based_on_topics(nlp, embedder, text1:str, text2:str, num_clusters=3):
# Preprocess and tokenize the texts
doc1 = nlp(preprocess(text1))
doc2 = nlp(preprocess(text2))
# Extract sentences from the texts
sentences1 = [sent.text for sent in doc1.sents]
sentences2 = [sent.text for sent in doc2.sents]
all_sentences = sentences1 + sentences2
# Generate sentence embeddings for each sentence
sentence_embeddings1 = embedder.encode(sentences1)
sentence_embeddings2 = embedder.encode(sentences2)
all_embeddings = np.concatenate((sentence_embeddings1, sentence_embeddings2), axis=0)
# Normalize the embeddings to unit length
# all_embeddings = all_embeddings / np.linalg.norm(all_embeddings, axis=1, keepdims=True)
# Perform agglomerative clustering
clustering_model = KMeans(n_clusters=num_clusters)
clustering_model.fit(all_embeddings)
cluster_assignment = clustering_model.labels_
clustered_sentences = {}
for sentence_id, cluster_id in enumerate(cluster_assignment):
if cluster_id not in clustered_sentences:
clustered_sentences[cluster_id] = []
clustered_sentences[cluster_id].append(all_sentences[sentence_id])
return clustered_sentences
def generate_insights(topics:dict, name1:str, name2:str, text1:str, text2:str, clusters) -> list:
openai.api_key = os.getenv("OPENAI_API_KEY")
PROMPT = open("insights.prompt", "r").read()
# print(topics)
PROMPT = PROMPT.replace("{{name1}}", name1)
PROMPT = PROMPT.replace("{{name2}}", name2)
PROMPT = PROMPT.replace("{{topic1}}", ",".join(topics['insight1'][0]))
PROMPT = PROMPT.replace("{{topic2}}", ",".join(topics['insight2'][0]))
PROMPT = PROMPT.replace("{{complex1}}", ",".join(topics['insight1'][1]))
PROMPT = PROMPT.replace("{{complex2}}", ",".join(topics['insight2'][1]))
final_insights = []
for cluster_id, sentences in clusters.items():
# print(cluster_id, " ", sentences)
final_sentences = "\n".join(sentences)[:4000]
final_prompt = PROMPT.replace("{{sentences}}", final_sentences)
# with open(f"prompter/insights_{cluster_id}.prompt", "w") as f:
# f.write(final_prompt)
# Generate insights for each cluster
response = openai.Completion.create(
model="text-davinci-003",
prompt=final_prompt,
max_tokens=200,
temperature=0.7,
top_p=1,
frequency_penalty=0.0,
presence_penalty=0.0,
)
text = response['choices'][0]['text']
jsonify = json.loads(text)
final_insights.append(jsonify)
return final_insights