Spaces:
Build error
Build error
Keane Moraes
commited on
Commit
•
232a10d
1
Parent(s):
4268ace
extracting keywords from texts
Browse files- .gitignore +2 -0
- app.py +17 -7
- generation.py +19 -2
- utils.py +29 -18
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
/__pycache__*
|
2 |
+
recursive-exclude * *.py[co]
|
app.py
CHANGED
@@ -1,14 +1,24 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
|
|
3 |
|
4 |
import time
|
5 |
|
6 |
st.title("Drop the first document")
|
7 |
-
file1 = st.file_uploader("Upload a file", type=["md", "txt"])
|
8 |
st.title("Drop the second document")
|
9 |
-
file2 = st.file_uploader("Upload a file", type=["md", "txt"])
|
10 |
|
11 |
-
|
12 |
-
st.
|
13 |
-
st.title("Contents of the second file")
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from generation import Insights
|
3 |
+
|
4 |
|
5 |
import time
|
6 |
|
7 |
st.title("Drop the first document")
|
8 |
+
file1 = st.file_uploader("Upload a file", type=["md", "txt"], key="first")
|
9 |
st.title("Drop the second document")
|
10 |
+
file2 = st.file_uploader("Upload a file", type=["md", "txt"], key="second")
|
11 |
|
12 |
+
if file1 is not None and file2 is not None:
|
13 |
+
st.title("Contents of the first file")
|
14 |
+
st.title("Contents of the second file")
|
15 |
+
|
16 |
+
st.title("Generating insights")
|
17 |
+
with st.spinner('Generating insights...'):
|
18 |
+
insight1 = Insights(file1.read().decode("utf-8"))
|
19 |
+
insight2 = Insights(file2.read().decode("utf-8"))
|
20 |
+
st.write(insight1.text)
|
21 |
+
st.write(insight2.text)
|
22 |
+
st.write(insight1.generate_topics())
|
23 |
+
st.write(insight2.generate_topics())
|
24 |
+
st.success('Done!')
|
generation.py
CHANGED
@@ -1,8 +1,25 @@
|
|
1 |
import openai
|
|
|
|
|
2 |
|
3 |
class Insights:
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
|
|
1 |
import openai
|
2 |
+
from utils import *
|
3 |
+
import mdforest
|
4 |
|
5 |
class Insights:
|
6 |
|
7 |
+
EMBEDDING_MAX_TOKENS = 8191
|
8 |
+
|
9 |
+
def __init__(self, text:str) -> None:
|
10 |
+
self.corpus = preprocess(mdforest.clean_markdown(text))
|
11 |
+
self.text = create_nest_sentences(self.corpus, self.EMBEDDING_MAX_TOKENS)
|
12 |
+
self.keywords = []
|
13 |
+
self.model = load_keyword_model()
|
14 |
+
|
15 |
+
def generate_topics(self) -> list:
|
16 |
+
print("We are here for generating topics")
|
17 |
+
for sentence in self.text:
|
18 |
+
self.keywords = self.keywords + generate_keywords(self.model, sentence)
|
19 |
+
return self.keywords
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
|
25 |
|
utils.py
CHANGED
@@ -1,14 +1,24 @@
|
|
1 |
import streamlit as st
|
2 |
from keybert import KeyBERT
|
|
|
3 |
from transformers import AutoTokenizer
|
4 |
import re
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
def create_nest_sentences(document:str, token_max_length =
|
8 |
nested = []
|
9 |
sent = []
|
10 |
length = 0
|
11 |
-
tokenizer =
|
12 |
|
13 |
for sentence in re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', document.replace("\n", ' ')):
|
14 |
tokens_in_sentence = tokenizer(str(sentence), truncation=False, padding=False)[0] # hugging face transformer tokenizer
|
@@ -25,19 +35,20 @@ def create_nest_sentences(document:str, token_max_length = 1024):
|
|
25 |
nested.append(sent)
|
26 |
return nested
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
1 |
import streamlit as st
|
2 |
from keybert import KeyBERT
|
3 |
+
from nltk.corpus import stopwords
|
4 |
from transformers import AutoTokenizer
|
5 |
import re
|
6 |
|
7 |
+
@st.cache_data
|
8 |
+
def load_autotoken():
|
9 |
+
autotok = AutoTokenizer.from_pretrained('facebook/bart-large-mnli')
|
10 |
+
return autotok
|
11 |
+
|
12 |
+
@st.cache_data
|
13 |
+
def load_keyword_model():
|
14 |
+
kw_model = KeyBERT()
|
15 |
+
return kw_model
|
16 |
|
17 |
+
def create_nest_sentences(document:str, token_max_length = 8191):
|
18 |
nested = []
|
19 |
sent = []
|
20 |
length = 0
|
21 |
+
tokenizer = load_autotoken()
|
22 |
|
23 |
for sentence in re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', document.replace("\n", ' ')):
|
24 |
tokens_in_sentence = tokenizer(str(sentence), truncation=False, padding=False)[0] # hugging face transformer tokenizer
|
|
|
35 |
nested.append(sent)
|
36 |
return nested
|
37 |
|
38 |
+
def preprocess(text) -> str:
|
39 |
+
stop_words = set(stopwords.words("english"))
|
40 |
+
text = text.lower()
|
41 |
+
text = ''.join([c for c in text if c not in ('!', '.', ',', '?', ':', ';', '"', "'", '-', '(', ')')])
|
42 |
+
words = text.split()
|
43 |
+
words = [w for w in words if not w in stop_words]
|
44 |
+
return " ".join(words)
|
45 |
+
|
46 |
+
def generate_keywords(kw_model, document: str) -> list:
|
47 |
+
atomic_extractions = kw_model.extract_keywords(document, keyphrase_ngram_range=(1, 1), stop_words=None, use_maxsum=True, nr_candidates=20, top_n=10)
|
48 |
+
complex_extractions = kw_model.extract_keywords(document, keyphrase_ngram_range=(1, 2), stop_words=None, use_maxsum=True, nr_candidates=20, top_n=10)
|
49 |
+
final_topics = []
|
50 |
+
for extraction in atomic_extractions:
|
51 |
+
final_topics.append(extraction[0])
|
52 |
+
for extraction in complex_extractions:
|
53 |
+
final_topics.append(extraction[0])
|
54 |
+
return final_topics
|