File size: 3,859 Bytes
f80dc67
 
 
 
 
 
 
16c3f1f
 
f80dc67
 
 
 
16c3f1f
 
 
 
 
 
 
 
 
 
 
f80dc67
 
 
 
 
 
 
 
 
 
16c3f1f
 
f80dc67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c3f1f
f80dc67
16c3f1f
f80dc67
 
 
 
 
 
 
 
16c3f1f
 
 
 
f80dc67
 
16c3f1f
f80dc67
 
 
 
 
 
 
 
 
 
 
 
49885d4
f80dc67
 
 
 
 
 
 
 
 
 
 
 
16c3f1f
f80dc67
 
16c3f1f
f80dc67
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
from gradio import ChatInterface, Request
import anyio
import os
import threading
import sys
from itertools import chain
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

LOG_LEVEL = "INFO"
TIMEOUT = 60

# Load Hugging Face model and tokenizer
model_name = "gpt2"  # You can change this to any other model available on Hugging Face
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Define function to generate responses using the Hugging Face model
def generate_response(message, history):
    inputs = tokenizer(message, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=150, pad_token_id=tokenizer.eos_token_id)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

class myChatInterface(ChatInterface):
    async def _submit_fn(
        self,
        message: str,
        history_with_input: list[list[str | None]],
        request: Request,
        *args,
    ) -> tuple[list[list[str | None]], list[list[str | None]]]:
        history = history_with_input[:-1]
        response = generate_response(message, history)
        history.append([message, response])
        return history, history

with gr.Blocks() as demo:
    def flatten_chain(list_of_lists):
        return list(chain.from_iterable(list_of_lists))

    class thread_with_trace(threading.Thread):
        def __init__(self, *args, **keywords):
            threading.Thread.__init__(self, *args, **keywords)
            self.killed = False
            self._return = None

        def start(self):
            self.__run_backup = self.run
            self.run = self.__run
            threading.Thread.start(self)

        def __run(self):
            sys.settrace(self.globaltrace)
            self.__run_backup()
            self.run = self.__run_backup

        def run(self):
            if self._target is not None:
                self._return = self._target(*self._args, **self._kwargs)

        def globaltrace(self, frame, event, arg):
            if event == "call":
                return self.localtrace
            else:
                return None

        def localtrace(self, frame, event, arg):
            if self.killed:
                if event == "line":
                    raise SystemExit()
            return self.localtrace

        def kill(self):
            self.killed = True

        def join(self, timeout=0):
            threading.Thread.join(self, timeout)
            return self._return

    def get_description_text():
        return """
        # Hugging Face Model Chatbot Demo

        This demo shows how to build a chatbot using models available on Hugging Face.
        """

    description = gr.Markdown(get_description_text())

    with gr.Row() as params:
        txt_model = gr.Dropdown(
            label="Model",
            choices=[
                "gpt2",
                "gpt-2-medium",
                "gpt-2-large",
                "gpt-2-xl",
            ],
            allow_custom_value=True,
            value="gpt2",
            container=True,
        )

    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        avatar_images=(
            "human.png",
            (os.path.join(os.path.dirname(__file__), "autogen.png")),
        ),
        render=False,
        height=600,
    )

    txt_input = gr.Textbox(
        scale=4,
        show_label=False,
        placeholder="Enter text and press enter",
        container=False,
        render=False,
        autofocus=True,
    )

    chatiface = myChatInterface(
        respond=None,
        chatbot=chatbot,
        textbox=txt_input,
        additional_inputs=[txt_model],
    )

if __name__ == "__main__":
    demo.launch(share=True, server_name="0.0.0.0")