# -*- coding: utf-8 -*-
# from datetime import datetime
from collections import defaultdict
from numba import njit, jit
# import pandas as pd
import numpy as np
from modules.constants import MAPPING_TITLES, MAPPING_SCORES_INDEX
@njit(fastmath=True)
def compute_distance(reference, prediction, distance):
for char_pred in range(1, len(prediction) + 1):
for char_ref in range(1, len(reference) + 1):
delt = 1 if prediction[char_pred - 1] != reference[char_ref - 1] else 0
distance[char_pred, char_ref] = min(distance[char_pred - 1, char_ref - 1] + delt,
distance[char_pred - 1, char_ref] + 1,
distance[char_pred, char_ref - 1] + 1)
return distance
@jit(nopython=True, nogil=True)
def check_back_direction(direction, char_ref, char_pred):
char_pred = char_pred - 1 if direction == "<-" or direction == "\\" else char_pred
char_ref = char_ref - 1 if direction == "^" or direction == "\\" else char_ref
return char_ref, char_pred
def show_diff_color_html(reference: str, prediction: str) -> dict:
"""Display source and prediction in HTML format and color-code insertions (blue),
deletions (red), and exact words (green). based on Levensthein algorithm.
Example
--------
>>> show_diff_color_html("Chat", "Chien")
["C", "h",
"i", "e",
"a", "n",
"t"]
Args:
reference (str): reference sequence
prediction (str): prediction sequence
Returns:
list: list of HTML tag with color code
"""
result = []
res_r = []
res_p = []
distance = np.zeros((len(prediction) + 1, len(reference) + 1), dtype=int)
distance[0, 1:] = range(1, len(reference) + 1)
distance[1:, 0] = range(1, len(prediction) + 1)
distance = compute_distance(reference, prediction, distance)
# sequences alignment
# iterate the matrix's values from back to forward
char_pred = len(prediction)
char_ref = len(reference)
counter = 0
while char_pred > 0 and char_ref > 0:
counter +=1
diagonal = distance[char_pred - 1, char_ref - 1]
upper = distance[char_pred, char_ref - 1]
left = distance[char_pred - 1, char_ref]
# check back direction
direction = "\\" if diagonal <= upper and \
diagonal <= left else "<-" \
if left < diagonal and \
left <= upper else "^"
#char_pred = char_pred - 1 if direction == "<-" or direction == "\\" else char_pred
#char_ref = char_ref - 1 if direction == "^" or direction == "\\" else char_ref
char_ref, char_pred = check_back_direction(direction, char_ref, char_pred)
# Colorize characters with HTML tags
if (direction == "\\"):
if distance[char_pred + 1, char_ref + 1] == diagonal:
# exact match
result.append(f"{prediction[char_pred]}")
res_r.append(f"{reference[char_ref]}")
res_p.append(f"{prediction[char_pred]}")
elif distance[char_pred + 1, char_ref + 1] > diagonal:
result.append(f"{reference[char_ref]}")
result.append(f"{prediction[char_pred]}")
res_r.append(f"{reference[char_ref]}")
res_p.append(f"{prediction[char_pred]}")
else:
result.append(f"{prediction[char_pred]}")
result.append(f"{reference[char_ref]}")
res_r.append(f"{reference[char_ref]}")
res_p.append(f"{prediction[char_pred]}")
elif (direction == "<-"):
result.append(f"{prediction[char_pred]}")
res_p.append(f"{prediction[char_pred]}")
elif (direction == "^"):
result.append(f"{reference[char_ref]}")
res_r.append(f"{reference[char_ref]}")
# reverse the list of result
return {"comparaison": result[::-1], "reference": res_r[::-1], "prediction": res_p[::-1]}
def serialize_scores(board: dict) -> dict:
"""Serialize Kami board in correct format to display in HTML table
Args:
board (dict): Kami dict that contains transcription metrics and preprocessing keys
Returns:
dict : dict that contain scores and columns
"""
# set empty value in columns list to represent score legend title in final table
columns = [""]
# case with text preprocessing actions
if "default" in board.keys():
scores = defaultdict(list)
for type_preprocess, results in board.items():
if isinstance(results, dict):
# convert (from mapping) and add correct preprocessing
# titles display in final table
columns.append(MAPPING_TITLES[type_preprocess])
# convert and add correct metrics titles
# display in final table
for type_metric, score in results.items():
if type_metric != "wer_hunt":
scores[MAPPING_SCORES_INDEX[type_metric]].append(score)
# final score list eg.
# [["Levensthein Distance (Char.)", 4, 4, 4, 4], ["Word Error Rate (WER)", 14, 35.54, 46.6, 20], ...]
scores = [[type_metric]+scores for type_metric, scores in dict(scores).items() if type_metric != "wer_hunt"]
else:
columns.append(MAPPING_TITLES["default"])
scores = [[MAPPING_SCORES_INDEX[type_metric], score] for type_metric, score in board.items() if type_metric != "wer_hunt"]
return {
"scores": scores,
"columns": columns
}
"""
LEGACY
def make_dataframe(score_board, reference):
metadata_keys = ['levensthein_distance_char', 'levensthein_distance_words', 'hamming_distance', 'wer', 'cer',
'wacc', 'mer', 'cil', 'cip', 'hits', 'substitutions', 'deletions', 'insertions']
now = datetime.now()
metadatas = {}
metrics = {}
metadatas["DATETIME"] = now.strftime("%d_%m_%Y_%H:%M:%S")
metadatas["IMAGE"] = None # TODO changer quand implémenté
metadatas["REFERENCE"] = reference
metadatas["MODEL"] = None # TODO changer quand implémenté
for key, value in score_board.items():
if type(value) != dict and key not in metadata_keys:
metadatas[key] = value
else:
metrics[key] = value
try:
df_metrics = pd.DataFrame.from_dict(metrics)
except:
df_metrics = pd.DataFrame.from_dict(metrics, orient='index')
displayable_titles = {0: "Default",
"0": "Default",
"default": "Default",
"non_digits": "Ignoring digits",
"lowercase": "Ignoring case",
"remove_punctuation": "Ignoring punctuation",
"remove_diacritics": "Ignoring diacritics",
"all_transforms": "Combining all options"}
displayable_index = {"cer": "Char. Error Rate (CER)", "wer": "Word Error Rate (WER)",
"levensthein_distance_char": "Levensthein Distance (Char.)",
"levensthein_distance_words": "Levensthein Distance (Words)",
"hamming_distance": "Hamming Distance",
"wacc": "Word Accuracy (Wacc)",
"mer": "Match Error Rate (MER)",
"cil": "Char. Information Lost (CIL)",
"cip": "Char. Information Preserved (CIP)",
"hits": "Hits",
"substitutions": "Substitutions",
"deletions": "Deletions",
"insertions": "Insertions"}
df_metrics.rename(columns=displayable_titles, index=displayable_index, inplace=True)
tables = [df_metrics.to_html(classes=["data", "table", "table-hover", "table-bordered", "table-result-metrics"],
justify='center')]
titles = [df_metrics.columns.values]
return tables, titles, metrics
"""