File size: 9,508 Bytes
55f9b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Natural Language Toolkit: NLTK's very own tokenizer, slightly modified.
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Liling Tan
#         Tom Aarsen <> (modifications)
# URL: <https://www.nltk.org>


import re
import warnings
from typing import Iterator, List, Tuple


def align_tokens(tokens, sentence):
    """
    This module attempt to find the offsets of the tokens in *s*, as a sequence
    of ``(start, end)`` tuples, given the tokens and also the source string.

        >>> from nltk.tokenize import TreebankWordTokenizer
        >>> from nltk.tokenize.util import align_tokens
        >>> s = str("The plane, bound for St Petersburg, crashed in Egypt's "
        ... "Sinai desert just 23 minutes after take-off from Sharm el-Sheikh "
        ... "on Saturday.")
        >>> tokens = TreebankWordTokenizer().tokenize(s)
        >>> expected = [(0, 3), (4, 9), (9, 10), (11, 16), (17, 20), (21, 23),
        ... (24, 34), (34, 35), (36, 43), (44, 46), (47, 52), (52, 54),
        ... (55, 60), (61, 67), (68, 72), (73, 75), (76, 83), (84, 89),
        ... (90, 98), (99, 103), (104, 109), (110, 119), (120, 122),
        ... (123, 131), (131, 132)]
        >>> output = list(align_tokens(tokens, s))
        >>> len(tokens) == len(expected) == len(output)  # Check that length of tokens and tuples are the same.
        True
        >>> expected == list(align_tokens(tokens, s))  # Check that the output is as expected.
        True
        >>> tokens == [s[start:end] for start, end in output]  # Check that the slices of the string corresponds to the tokens.
        True

    :param tokens: The list of strings that are the result of tokenization
    :type tokens: list(str)
    :param sentence: The original string
    :type sentence: str
    :rtype: list(tuple(int,int))
    """
    point = 0
    offsets = []
    for token in tokens:
        try:
            start = sentence.index(token, point)
        except ValueError as e:
            raise ValueError(f'substring "{token}" not found in "{sentence}"') from e
        point = start + len(token)
        offsets.append((start, point))
    return offsets


class NLTKWordTokenizer:
    """
    The NLTK tokenizer that has improved upon the TreebankWordTokenizer.

    This is the method that is invoked by ``word_tokenize()``.  It assumes that the
    text has already been segmented into sentences, e.g. using ``sent_tokenize()``.

    The tokenizer is "destructive" such that the regexes applied will munge the
    input string to a state beyond re-construction. It is possible to apply
    `TreebankWordDetokenizer.detokenize` to the tokenized outputs of
    `NLTKDestructiveWordTokenizer.tokenize` but there's no guarantees to
    revert to the original string.
    """

    # Starting quotes.
    STARTING_QUOTES = [
        (re.compile("([«“‘„]|[`]+)", re.U), r" \1 "),
        (re.compile(r"^\""), r' " '),
        (re.compile(r"(``)"), r" \1 "),
        (re.compile(r"([ \(\[{<])(\"|\'{2})"), r'\1 " '),
#        (re.compile(r"(?i)(\')(?!re|ve|ll|m|t|s|d|n)(\w)\b", re.U), r"\1 \2"),
    ]

    # Ending quotes.
    ENDING_QUOTES = [
        (re.compile("([»”’])", re.U), r" \1 "),
        (re.compile(r"''"), " '' "),
        (re.compile(r'"'), ' " '),
        (re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "),
#        (re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "),
    ]

    # For improvements for starting/closing quotes from TreebankWordTokenizer,
    # see discussion on https://github.com/nltk/nltk/pull/1437
    # Adding to TreebankWordTokenizer, nltk.word_tokenize now splits on
    # - chervon quotes u'\xab' and u'\xbb' .
    # - unicode quotes u'\u2018', u'\u2019', u'\u201c' and u'\u201d'
    # See https://github.com/nltk/nltk/issues/1995#issuecomment-376741608
    # Also, behavior of splitting on clitics now follows Stanford CoreNLP
    # - clitics covered (?!re|ve|ll|m|t|s|d)(\w)\b

    # Punctuation.
    PUNCTUATION = [
        (re.compile(r'([^\.])(\.)([\]\)}>"\'' "»”’ " r"]*)\s*$", re.U), r"\1 \2 \3 "),
        (re.compile(r"([:,])([^\d])"), r" \1 \2"),
        (re.compile(r"([:,])$"), r" \1 "),
        (
            re.compile(r"\.{2,}", re.U),
            r" \g<0> ",
        ),  # See https://github.com/nltk/nltk/pull/2322
        (re.compile(r"[;@#$%&]"), r" \g<0> "),
        (
            re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'),
            r"\1 \2\3 ",
        ),  # Handles the final period.
        (re.compile(r"[?!]"), r" \g<0> "),
        (re.compile(r"([^'])' "), r"\1 ' "),
        (
            re.compile(r"[*]", re.U),
            r" \g<0> ",
        ),  # See https://github.com/nltk/nltk/pull/2322
    ]

    # Pads parentheses
    PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ")

    # Optionally: Convert parentheses, brackets and converts them to PTB symbols.
    # CONVERT_PARENTHESES = [
    #     (re.compile(r"\("), "-LRB-"),
    #     (re.compile(r"\)"), "-RRB-"),
    #     (re.compile(r"\["), "-LSB-"),
    #     (re.compile(r"\]"), "-RSB-"),
    #     (re.compile(r"\{"), "-LCB-"),
    #     (re.compile(r"\}"), "-RCB-"),
    # ]

    DOUBLE_DASHES = (re.compile(r"--"), r" -- ")

    # List of contractions adapted from Robert MacIntyre's tokenizer.
    # _contractions = MacIntyreContractions()
    # CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2))
    # CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3))

    def tokenize(
        self, text: str
    ) -> List[str]:
        r"""Return a tokenized copy of `text`.

        >>> from nltk.tokenize import NLTKWordTokenizer
        >>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York.  Please buy me\ntwo of them.\nThanks.'''
        >>> NLTKWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE
        ['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36',
        'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
        'of', 'them.', 'Thanks', '.']
        >>> NLTKWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE
        ['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36',
        'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
        'of', 'them.', 'Thanks', '.']


        :param text: A string with a sentence or sentences.
        :type text: str
        :param convert_parentheses: if True, replace parentheses to PTB symbols,
            e.g. `(` to `-LRB-`. Defaults to False.
        :type convert_parentheses: bool, optional
        :param return_str: If True, return tokens as space-separated string,
            defaults to False.
        :type return_str: bool, optional
        :return: List of tokens from `text`.
        :rtype: List[str]
        """

        for regexp, substitution in self.STARTING_QUOTES:
            text = regexp.sub(substitution, text)

        for regexp, substitution in self.PUNCTUATION:
            text = regexp.sub(substitution, text)

        # Handles parentheses.
        regexp, substitution = self.PARENS_BRACKETS
        text = regexp.sub(substitution, text)

        # Handles double dash.
        regexp, substitution = self.DOUBLE_DASHES
        text = regexp.sub(substitution, text)

        # add extra space to make things easier
        text = " " + text + " "

        for regexp, substitution in self.ENDING_QUOTES:
            text = regexp.sub(substitution, text)

        return text.split()

    def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]:
        r"""
        Returns the spans of the tokens in ``text``.
        Uses the post-hoc nltk.tokens.align_tokens to return the offset spans.

            >>> from nltk.tokenize import NLTKWordTokenizer
            >>> s = '''Good muffins cost $3.88\nin New (York).  Please (buy) me\ntwo of them.\n(Thanks).'''
            >>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23),
            ... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38),
            ... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59),
            ... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)]
            >>> list(NLTKWordTokenizer().span_tokenize(s)) == expected
            True
            >>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in',
            ... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')',
            ... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.']
            >>> [s[start:end] for start, end in NLTKWordTokenizer().span_tokenize(s)] == expected
            True

        :param text: A string with a sentence or sentences.
        :type text: str
        :yield: Tuple[int, int]
        """
        raw_tokens = self.tokenize(text)

        # Convert converted quotes back to original double quotes
        # Do this only if original text contains double quote(s) or double
        # single-quotes (because '' might be transformed to `` if it is
        # treated as starting quotes).
        # if ('"' in text) or ("''" in text):
        #     # Find double quotes and converted quotes
        #     matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)]

        #     # Replace converted quotes back to double quotes
        #     tokens = [
        #         matched.pop(0) if tok in ['"', "``", "''"] else tok
        #         for tok in raw_tokens
        #     ]
        # else:
        tokens = raw_tokens

        yield from align_tokens(tokens, text)