|
import math |
|
from typing import List, Optional, Tuple, Union |
|
import dependency_decoding |
|
import ftfy |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils import checkpoint |
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.activations import gelu_new |
|
from transformers.modeling_outputs import ( |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
BaseModelOutput |
|
) |
|
from transformers.pytorch_utils import softmax_backward_data |
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
from dataset import Dataset |
|
|
|
|
|
class NorbertConfig(PretrainedConfig): |
|
"""Configuration class to store the configuration of a `NorbertModel`. |
|
""" |
|
def __init__( |
|
self, |
|
vocab_size=50000, |
|
attention_probs_dropout_prob=0.1, |
|
hidden_dropout_prob=0.1, |
|
hidden_size=768, |
|
intermediate_size=2048, |
|
max_position_embeddings=512, |
|
position_bucket_size=32, |
|
num_attention_heads=12, |
|
num_hidden_layers=12, |
|
layer_norm_eps=1.0e-7, |
|
output_all_encoded_layers=True, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.output_all_encoded_layers = output_all_encoded_layers |
|
self.position_bucket_size = position_bucket_size |
|
self.layer_norm_eps = layer_norm_eps |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, config, activation_checkpointing=False): |
|
super().__init__() |
|
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
for i, layer in enumerate(self.layers): |
|
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
|
|
self.activation_checkpointing = activation_checkpointing |
|
|
|
def forward(self, hidden_states, attention_mask, relative_embedding): |
|
hidden_states, attention_probs = [hidden_states], [] |
|
|
|
for layer in self.layers: |
|
if self.activation_checkpointing: |
|
hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding) |
|
else: |
|
hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding) |
|
|
|
hidden_states.append(hidden_state) |
|
attention_probs.append(attention_p) |
|
|
|
return hidden_states, attention_probs |
|
|
|
|
|
class MaskClassifier(nn.Module): |
|
def __init__(self, config, subword_embedding): |
|
super().__init__() |
|
self.nonlinearity = nn.Sequential( |
|
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), |
|
nn.Dropout(config.hidden_dropout_prob), |
|
nn.Linear(subword_embedding.size(1), subword_embedding.size(0)) |
|
) |
|
self.initialize(config.hidden_size, subword_embedding) |
|
|
|
def initialize(self, hidden_size, embedding): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
self.nonlinearity[-1].weight = embedding |
|
self.nonlinearity[1].bias.data.zero_() |
|
self.nonlinearity[-1].bias.data.zero_() |
|
|
|
def forward(self, x, masked_lm_labels=None): |
|
if masked_lm_labels is not None: |
|
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze()) |
|
x = self.nonlinearity(x) |
|
return x |
|
|
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.attention = Attention(config) |
|
self.mlp = FeedForward(config) |
|
|
|
def forward(self, x, padding_mask, relative_embedding): |
|
attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding) |
|
x = x + attention_output |
|
x = x + self.mlp(x) |
|
return x, attention_probs |
|
|
|
|
|
class GeGLU(nn.Module): |
|
def forward(self, x): |
|
x, gate = x.chunk(2, dim=-1) |
|
x = x * gelu_new(gate) |
|
return x |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False), |
|
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False), |
|
GeGLU(), |
|
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False), |
|
nn.Linear(config.intermediate_size, config.hidden_size, bias=False), |
|
nn.Dropout(config.hidden_dropout_prob) |
|
) |
|
self.initialize(config.hidden_size) |
|
|
|
def initialize(self, hidden_size): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
|
def forward(self, x): |
|
return self.mlp(x) |
|
|
|
|
|
class MaskedSoftmax(torch.autograd.Function): |
|
@staticmethod |
|
def forward(self, x, mask, dim): |
|
self.dim = dim |
|
x.masked_fill_(mask, float('-inf')) |
|
x = torch.softmax(x, self.dim) |
|
x.masked_fill_(mask, 0.0) |
|
self.save_for_backward(x) |
|
return x |
|
|
|
@staticmethod |
|
def backward(self, grad_output): |
|
output, = self.saved_tensors |
|
input_grad = softmax_backward_data(self, grad_output, output, self.dim, output) |
|
return input_grad, None, None |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.config = config |
|
|
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}") |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_size = config.hidden_size // config.num_attention_heads |
|
|
|
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True) |
|
self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
|
|
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False) |
|
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True) |
|
|
|
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \ |
|
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0) |
|
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings) |
|
position_indices = config.position_bucket_size - 1 + position_indices |
|
self.register_buffer("position_indices", position_indices, persistent=True) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.scale = 1.0 / math.sqrt(3 * self.head_size) |
|
self.initialize() |
|
|
|
def make_log_bucket_position(self, relative_pos, bucket_size, max_position): |
|
sign = torch.sign(relative_pos) |
|
mid = bucket_size // 2 |
|
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1)) |
|
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid |
|
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long() |
|
return bucket_pos |
|
|
|
def initialize(self): |
|
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) |
|
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
self.in_proj_qk.bias.data.zero_() |
|
self.in_proj_v.bias.data.zero_() |
|
self.out_proj.bias.data.zero_() |
|
|
|
def compute_attention_scores(self, hidden_states, relative_embedding): |
|
key_len, batch_size, _ = hidden_states.size() |
|
query_len = key_len |
|
|
|
if self.position_indices.size(0) < query_len: |
|
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \ |
|
- torch.arange(query_len, dtype=torch.long).unsqueeze(0) |
|
position_indices = self.make_log_bucket_position(position_indices, self.position_bucket_size, 512) |
|
position_indices = self.position_bucket_size - 1 + position_indices |
|
self.position_indices = position_indices.to(hidden_states.device) |
|
|
|
hidden_states = self.pre_layer_norm(hidden_states) |
|
|
|
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) |
|
value = self.in_proj_v(hidden_states) |
|
|
|
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) |
|
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) |
|
value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) |
|
|
|
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale) |
|
|
|
pos = self.in_proj_qk(self.dropout(relative_embedding)) |
|
query_pos, key_pos = pos.view(-1, self.num_heads, 2*self.head_size).chunk(2, dim=2) |
|
query = query.view(batch_size, self.num_heads, query_len, self.head_size) |
|
key = key.view(batch_size, self.num_heads, query_len, self.head_size) |
|
|
|
attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale) |
|
attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1)) |
|
|
|
position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1) |
|
attention_c_p = attention_c_p.gather(3, position_indices) |
|
attention_p_c = attention_p_c.gather(2, position_indices) |
|
|
|
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len) |
|
attention_scores.add_(attention_c_p) |
|
attention_scores.add_(attention_p_c) |
|
|
|
return attention_scores, value |
|
|
|
def compute_output(self, attention_probs, value): |
|
attention_probs = self.dropout(attention_probs) |
|
context = torch.bmm(attention_probs.flatten(0, 1), value) |
|
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) |
|
context = self.out_proj(context) |
|
context = self.post_layer_norm(context) |
|
context = self.dropout(context) |
|
return context |
|
|
|
def forward(self, hidden_states, attention_mask, relative_embedding): |
|
attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding) |
|
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1) |
|
return self.compute_output(attention_probs, value), attention_probs.detach() |
|
|
|
|
|
class Embedding(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size)) |
|
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.initialize() |
|
|
|
def initialize(self): |
|
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) |
|
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
|
def forward(self, input_ids): |
|
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids))) |
|
relative_embeddings = self.relative_layer_norm(self.relative_embedding) |
|
return word_embedding, relative_embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
class NorbertPreTrainedModel(PreTrainedModel): |
|
config_class = NorbertConfig |
|
base_model_prefix = "norbert3" |
|
supports_gradient_checkpointing = True |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, Encoder): |
|
module.activation_checkpointing = value |
|
|
|
def _init_weights(self, module): |
|
pass |
|
|
|
|
|
class NorbertModel(NorbertPreTrainedModel): |
|
def __init__(self, config, add_mlm_layer=False, gradient_checkpointing=False, **kwargs): |
|
super().__init__(config, **kwargs) |
|
self.config = config |
|
|
|
self.embedding = Embedding(config) |
|
self.transformer = Encoder(config, activation_checkpointing=gradient_checkpointing) |
|
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None |
|
|
|
def get_input_embeddings(self): |
|
return self.embedding.word_embedding |
|
|
|
def set_input_embeddings(self, value): |
|
self.embedding.word_embedding = value |
|
|
|
def get_contextualized_embeddings( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None |
|
) -> List[torch.Tensor]: |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
raise ValueError("You have to specify input_ids") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device) |
|
else: |
|
attention_mask = ~attention_mask.bool() |
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
|
|
static_embeddings, relative_embedding = self.embedding(input_ids.t()) |
|
contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding) |
|
contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings] |
|
last_layer = contextualized_embeddings[-1] |
|
contextualized_embeddings = [contextualized_embeddings[0]] + [ |
|
contextualized_embeddings[i] - contextualized_embeddings[i - 1] |
|
for i in range(1, len(contextualized_embeddings)) |
|
] |
|
return last_layer, contextualized_embeddings, attention_probs |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutput]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask) |
|
|
|
if not return_dict: |
|
return ( |
|
sequence_output, |
|
*([contextualized_embeddings] if output_hidden_states else []), |
|
*([attention_probs] if output_attentions else []) |
|
) |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=sequence_output, |
|
hidden_states=contextualized_embeddings if output_hidden_states else None, |
|
attentions=attention_probs if output_attentions else None |
|
) |
|
|
|
|
|
class Classifier(nn.Module): |
|
def __init__(self, hidden_size, vocab_size, dropout): |
|
super().__init__() |
|
|
|
self.transform = nn.Sequential( |
|
nn.Linear(hidden_size, hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm(hidden_size, elementwise_affine=False), |
|
nn.Dropout(dropout), |
|
nn.Linear(hidden_size, vocab_size) |
|
) |
|
self.initialize(hidden_size) |
|
|
|
def initialize(self, hidden_size): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_(self.transform[0].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.transform[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
self.transform[0].bias.data.zero_() |
|
self.transform[-1].bias.data.zero_() |
|
|
|
def forward(self, x): |
|
return self.transform(x) |
|
|
|
|
|
class ZeroClassifier(nn.Module): |
|
def forward(self, x): |
|
output = torch.zeros(x.size(0), x.size(1), 2, device=x.device, dtype=x.dtype) |
|
output[:, :, 0] = 1.0 |
|
output[:, :, 1] = -1.0 |
|
return output |
|
|
|
|
|
class EdgeClassifier(nn.Module): |
|
def __init__(self, hidden_size, dep_hidden_size, vocab_size, dropout): |
|
super().__init__() |
|
|
|
self.head_dep_transform = nn.Sequential( |
|
nn.Linear(hidden_size, hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm(hidden_size, elementwise_affine=False), |
|
nn.Dropout(dropout) |
|
) |
|
self.head_root_transform = nn.Sequential( |
|
nn.Linear(hidden_size, hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm(hidden_size, elementwise_affine=False), |
|
nn.Dropout(dropout) |
|
) |
|
self.head_bilinear = nn.Parameter(torch.zeros(hidden_size, hidden_size)) |
|
self.head_linear_dep = nn.Linear(hidden_size, 1, bias=False) |
|
self.head_linear_root = nn.Linear(hidden_size, 1, bias=False) |
|
self.head_bias = nn.Parameter(torch.zeros(1)) |
|
|
|
self.dep_dep_transform = nn.Sequential( |
|
nn.Linear(hidden_size, dep_hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm(dep_hidden_size, elementwise_affine=False), |
|
nn.Dropout(dropout) |
|
) |
|
self.dep_root_transform = nn.Sequential( |
|
nn.Linear(hidden_size, dep_hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm(dep_hidden_size, elementwise_affine=False), |
|
nn.Dropout(dropout) |
|
) |
|
self.dep_bilinear = nn.Parameter(torch.zeros(dep_hidden_size, dep_hidden_size, vocab_size)) |
|
self.dep_linear_dep = nn.Linear(dep_hidden_size, vocab_size, bias=False) |
|
self.dep_linear_root = nn.Linear(dep_hidden_size, vocab_size, bias=False) |
|
self.dep_bias = nn.Parameter(torch.zeros(vocab_size)) |
|
|
|
self.hidden_size = hidden_size |
|
self.dep_hidden_size = dep_hidden_size |
|
|
|
self.mask_value = float("-inf") |
|
self.initialize(hidden_size) |
|
|
|
def initialize(self, hidden_size): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_(self.head_dep_transform[0].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.head_root_transform[0].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.dep_dep_transform[0].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.dep_root_transform[0].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
|
nn.init.trunc_normal_(self.head_linear_dep.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.head_linear_root.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.dep_linear_dep.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
nn.init.trunc_normal_(self.dep_linear_root.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
|
self.head_dep_transform[0].bias.data.zero_() |
|
self.head_root_transform[0].bias.data.zero_() |
|
self.dep_dep_transform[0].bias.data.zero_() |
|
self.dep_root_transform[0].bias.data.zero_() |
|
|
|
def forward(self, head_x, dep_x, lengths, head_gold=None): |
|
head_dep = self.head_dep_transform(head_x[:, 1:, :]) |
|
head_root = self.head_root_transform(head_x) |
|
head_prediction = torch.einsum("bkn,nm,blm->bkl", head_dep, self.head_bilinear, head_root / math.sqrt(self.hidden_size)) \ |
|
+ self.head_linear_dep(head_dep) + self.head_linear_root(head_root).transpose(1, 2) + self.head_bias |
|
|
|
mask = (torch.arange(head_x.size(1)).unsqueeze(0) >= lengths.unsqueeze(1)).unsqueeze(1).to(head_x.device) |
|
mask = mask | (torch.ones(head_x.size(1) - 1, head_x.size(1), dtype=torch.bool, device=head_x.device).tril(1) & torch.ones(head_x.size(1) - 1, head_x.size(1), dtype=torch.bool, device=head_x.device).triu(1)) |
|
head_prediction = head_prediction.masked_fill(mask, self.mask_value) |
|
|
|
if head_gold is None: |
|
head_logp = torch.log_softmax(head_prediction, dim=-1) |
|
head_logp = F.pad(head_logp, (0, 0, 1, 0), value=torch.nan).cpu() |
|
head_gold = [] |
|
for i, length in enumerate(lengths.tolist()): |
|
head = self.max_spanning_tree(head_logp[i, :length, :length]) |
|
head = head + ((head_x.size(1) - 1) - len(head)) * [0] |
|
head_gold.append(torch.tensor(head)) |
|
head_gold = torch.stack(head_gold).to(head_x.device) |
|
|
|
dep_dep = self.dep_dep_transform(dep_x[:, 1:]) |
|
dep_root = dep_x.gather(1, head_gold.unsqueeze(-1).expand(-1, -1, dep_x.size(-1)).clamp(min=0)) |
|
dep_root = self.dep_root_transform(dep_root) |
|
dep_prediction = torch.einsum("btm,mnl,btn->btl", dep_dep, self.dep_bilinear, dep_root / math.sqrt(self.dep_hidden_size)) \ |
|
+ self.dep_linear_dep(dep_dep) + self.dep_linear_root(dep_root) + self.dep_bias |
|
|
|
return head_prediction, dep_prediction, head_gold |
|
|
|
def max_spanning_tree(self, weight_matrix): |
|
weight_matrix = weight_matrix.clone() |
|
|
|
|
|
|
|
|
|
parents, _ = dependency_decoding.chu_liu_edmonds(weight_matrix.numpy().astype(float)) |
|
|
|
assert parents[0] == -1, f"{parents}\n{weight_matrix}" |
|
parents = parents[1:] |
|
|
|
|
|
if parents.count(0) == 1: |
|
return parents |
|
|
|
|
|
|
|
best_score = float("-inf") |
|
best_parents = None |
|
|
|
for i in range(len(parents)): |
|
weight_matrix_mod = weight_matrix.clone() |
|
weight_matrix_mod[:i+1, 0] = torch.nan |
|
weight_matrix_mod[i+2:, 0] = torch.nan |
|
parents, score = dependency_decoding.chu_liu_edmonds(weight_matrix_mod.numpy().astype(float)) |
|
parents = parents[1:] |
|
|
|
if score > best_score: |
|
best_score = score |
|
best_parents = parents |
|
|
|
def print_whole_matrix(matrix): |
|
for i in range(matrix.shape[0]): |
|
print(" ".join([str(x) for x in matrix[i]])) |
|
|
|
assert best_parents is not None, f"{best_parents}\n{print_whole_matrix(weight_matrix)}" |
|
return best_parents |
|
|
|
|
|
class Model(nn.Module): |
|
def __init__(self, dataset): |
|
super().__init__() |
|
|
|
|
|
|
|
|
|
|
|
|
|
config = NorbertConfig.from_json_file("config.json") |
|
self.bert = NorbertModel(config) |
|
|
|
self.n_layers = config.num_hidden_layers |
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, elementwise_affine=False) |
|
self.upos_layer_score = nn.Parameter(torch.zeros(self.n_layers + 1, dtype=torch.float)) |
|
self.xpos_layer_score = nn.Parameter(torch.zeros(self.n_layers + 1, dtype=torch.float)) |
|
self.feats_layer_score = nn.Parameter(torch.zeros(self.n_layers + 1, dtype=torch.float)) |
|
self.lemma_layer_score = nn.Parameter(torch.zeros(self.n_layers + 1, dtype=torch.float)) |
|
self.head_layer_score = nn.Parameter(torch.zeros(self.n_layers + 1, dtype=torch.float)) |
|
self.dep_layer_score = nn.Parameter(torch.zeros(self.n_layers + 1, dtype=torch.float)) |
|
self.ner_layer_score = nn.Parameter(torch.zeros(self.n_layers + 1, dtype=torch.float)) |
|
|
|
self.lemma_classifier = Classifier(config.hidden_size, len(dataset.lemma_vocab), config.hidden_dropout_prob) |
|
self.upos_classifier = Classifier(config.hidden_size, len(dataset.upos_vocab), config.hidden_dropout_prob) if len(dataset.upos_vocab) > 2 else ZeroClassifier() |
|
self.xpos_classifier = Classifier(config.hidden_size, len(dataset.xpos_vocab), config.hidden_dropout_prob) if len(dataset.xpos_vocab) > 2 else ZeroClassifier() |
|
self.feats_classifier = Classifier(config.hidden_size, len(dataset.feats_vocab), config.hidden_dropout_prob) if len(dataset.feats_vocab) > 2 else ZeroClassifier() |
|
self.edge_classifier = EdgeClassifier(config.hidden_size, 128, len(dataset.arc_dep_vocab), config.hidden_dropout_prob) |
|
self.ner_classifier = Classifier(config.hidden_size, len(dataset.ne_vocab), config.hidden_dropout_prob) if len(dataset.ne_vocab) > 2 else ZeroClassifier() |
|
|
|
def forward(self, x, alignment_mask, subword_lengths, word_lengths, head_gold=None): |
|
padding_mask = (torch.arange(x.size(1)).unsqueeze(0) < subword_lengths.unsqueeze(1)).to(x.device) |
|
x = self.bert(x, padding_mask, output_hidden_states=True).hidden_states |
|
x = torch.stack(x, dim=0) |
|
|
|
upos_x = torch.einsum("lbtd, l -> btd", x, torch.softmax(self.upos_layer_score, dim=0)) |
|
xpos_x = torch.einsum("lbtd, l -> btd", x, torch.softmax(self.xpos_layer_score, dim=0)) |
|
feats_x = torch.einsum("lbtd, l -> btd", x, torch.softmax(self.feats_layer_score, dim=0)) |
|
lemma_x = torch.einsum("lbtd, l -> btd", x, torch.softmax(self.lemma_layer_score, dim=0)) |
|
head_x = torch.einsum("lbtd, l -> btd", x, torch.softmax(self.head_layer_score, dim=0)) |
|
dep_x = torch.einsum("lbtd, l -> btd", x, torch.softmax(self.dep_layer_score, dim=0)) |
|
ne_x = torch.einsum("lbtd, l -> btd", x, torch.softmax(self.ner_layer_score, dim=0)) |
|
|
|
upos_x = torch.einsum("bsd,bst->btd", upos_x, alignment_mask) / alignment_mask.sum(1).unsqueeze(-1).clamp(min=1.0) |
|
xpos_x = torch.einsum("bsd,bst->btd", xpos_x, alignment_mask) / alignment_mask.sum(1).unsqueeze(-1).clamp(min=1.0) |
|
feats_x = torch.einsum("bsd,bst->btd", feats_x, alignment_mask) / alignment_mask.sum(1).unsqueeze(-1).clamp(min=1.0) |
|
lemma_x = torch.einsum("bsd,bst->btd", lemma_x, alignment_mask) / alignment_mask.sum(1).unsqueeze(-1).clamp(min=1.0) |
|
head_x = torch.einsum("bsd,bst->btd", head_x, alignment_mask) / alignment_mask.sum(1).unsqueeze(-1).clamp(min=1.0) |
|
dep_x = torch.einsum("bsd,bst->btd", dep_x, alignment_mask) / alignment_mask.sum(1).unsqueeze(-1).clamp(min=1.0) |
|
ne_x = torch.einsum("bsd, bst -> btd", ne_x, alignment_mask) / alignment_mask.sum(1).unsqueeze(-1).clamp(min=1.0) |
|
|
|
upos_x = self.dropout(self.layer_norm(upos_x[:, 1:-1, :])) |
|
xpos_x = self.dropout(self.layer_norm(xpos_x[:, 1:-1, :])) |
|
feats_x = self.dropout(self.layer_norm(feats_x[:, 1:-1, :])) |
|
lemma_x = self.dropout(self.layer_norm(lemma_x[:, 1:-1, :])) |
|
head_x = self.dropout(self.layer_norm(head_x[:, 0:-1, :])) |
|
dep_x = self.dropout(self.layer_norm(dep_x[:, 0:-1, :])) |
|
ne_x = self.dropout(self.layer_norm(ne_x[:, 1:-1, :])) |
|
|
|
lemma_preds = self.lemma_classifier(lemma_x) |
|
upos_preds = self.upos_classifier(upos_x) |
|
xpos_preds = self.xpos_classifier(xpos_x) |
|
feats_preds = self.feats_classifier(feats_x) |
|
ne_preds = self.ner_classifier(feats_x) |
|
head_prediction, dep_prediction, head_liu = self.edge_classifier(head_x, dep_x, word_lengths, head_gold) |
|
|
|
return lemma_preds, upos_preds, xpos_preds, feats_preds, head_prediction, dep_prediction, ne_preds, head_liu |
|
|
|
|
|
class Parser: |
|
def __init__(self): |
|
checkpoint = torch.load("checkpoint.bin", map_location="cpu") |
|
|
|
self.dataset = Dataset() |
|
self.dataset.load_state_dict(checkpoint["dataset"]) |
|
|
|
self.model = Model(self.dataset) |
|
self.model.load_state_dict(checkpoint["model"]) |
|
self.model.eval() |
|
del checkpoint |
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
|
|
def parse(self, sentence): |
|
sentence = ftfy.fix_text(sentence.strip()) |
|
forms, subwords, alignment = self.dataset.prepare_input(sentence) |
|
|
|
with torch.no_grad(): |
|
output = self.model( |
|
subwords.to(self.device), |
|
alignment.to(self.device), |
|
torch.tensor([len(forms) + 1], device=self.device), |
|
torch.tensor([subwords.size(1)], device=self.device) |
|
) |
|
|
|
lemma_p, upos_p, xpos_p, feats_p, _, dep_p, ne_p, head_p = output |
|
lemmas, upos, xpos, feats, heads, deprel, ne = self.dataset.decode_output( |
|
forms, lemma_p, upos_p, xpos_p, feats_p, dep_p, ne_p, head_p |
|
) |
|
|
|
return { |
|
"forms": forms, |
|
"lemmas": lemmas, |
|
"upos": upos, |
|
"xpos": xpos, |
|
"feats": feats, |
|
"heads": heads, |
|
"deprel": deprel, |
|
"ne": ne |
|
} |
|
|