nor-ud / tokenizer.py
davda54
parser
55f9b9d
# Natural Language Toolkit: NLTK's very own tokenizer, slightly modified.
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Liling Tan
# Tom Aarsen <> (modifications)
# URL: <https://www.nltk.org>
import re
import warnings
from typing import Iterator, List, Tuple
def align_tokens(tokens, sentence):
"""
This module attempt to find the offsets of the tokens in *s*, as a sequence
of ``(start, end)`` tuples, given the tokens and also the source string.
>>> from nltk.tokenize import TreebankWordTokenizer
>>> from nltk.tokenize.util import align_tokens
>>> s = str("The plane, bound for St Petersburg, crashed in Egypt's "
... "Sinai desert just 23 minutes after take-off from Sharm el-Sheikh "
... "on Saturday.")
>>> tokens = TreebankWordTokenizer().tokenize(s)
>>> expected = [(0, 3), (4, 9), (9, 10), (11, 16), (17, 20), (21, 23),
... (24, 34), (34, 35), (36, 43), (44, 46), (47, 52), (52, 54),
... (55, 60), (61, 67), (68, 72), (73, 75), (76, 83), (84, 89),
... (90, 98), (99, 103), (104, 109), (110, 119), (120, 122),
... (123, 131), (131, 132)]
>>> output = list(align_tokens(tokens, s))
>>> len(tokens) == len(expected) == len(output) # Check that length of tokens and tuples are the same.
True
>>> expected == list(align_tokens(tokens, s)) # Check that the output is as expected.
True
>>> tokens == [s[start:end] for start, end in output] # Check that the slices of the string corresponds to the tokens.
True
:param tokens: The list of strings that are the result of tokenization
:type tokens: list(str)
:param sentence: The original string
:type sentence: str
:rtype: list(tuple(int,int))
"""
point = 0
offsets = []
for token in tokens:
try:
start = sentence.index(token, point)
except ValueError as e:
raise ValueError(f'substring "{token}" not found in "{sentence}"') from e
point = start + len(token)
offsets.append((start, point))
return offsets
class NLTKWordTokenizer:
"""
The NLTK tokenizer that has improved upon the TreebankWordTokenizer.
This is the method that is invoked by ``word_tokenize()``. It assumes that the
text has already been segmented into sentences, e.g. using ``sent_tokenize()``.
The tokenizer is "destructive" such that the regexes applied will munge the
input string to a state beyond re-construction. It is possible to apply
`TreebankWordDetokenizer.detokenize` to the tokenized outputs of
`NLTKDestructiveWordTokenizer.tokenize` but there's no guarantees to
revert to the original string.
"""
# Starting quotes.
STARTING_QUOTES = [
(re.compile("([Β«β€œβ€˜β€ž]|[`]+)", re.U), r" \1 "),
(re.compile(r"^\""), r' " '),
(re.compile(r"(``)"), r" \1 "),
(re.compile(r"([ \(\[{<])(\"|\'{2})"), r'\1 " '),
# (re.compile(r"(?i)(\')(?!re|ve|ll|m|t|s|d|n)(\w)\b", re.U), r"\1 \2"),
]
# Ending quotes.
ENDING_QUOTES = [
(re.compile("([»”’])", re.U), r" \1 "),
(re.compile(r"''"), " '' "),
(re.compile(r'"'), ' " '),
(re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "),
# (re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "),
]
# For improvements for starting/closing quotes from TreebankWordTokenizer,
# see discussion on https://github.com/nltk/nltk/pull/1437
# Adding to TreebankWordTokenizer, nltk.word_tokenize now splits on
# - chervon quotes u'\xab' and u'\xbb' .
# - unicode quotes u'\u2018', u'\u2019', u'\u201c' and u'\u201d'
# See https://github.com/nltk/nltk/issues/1995#issuecomment-376741608
# Also, behavior of splitting on clitics now follows Stanford CoreNLP
# - clitics covered (?!re|ve|ll|m|t|s|d)(\w)\b
# Punctuation.
PUNCTUATION = [
(re.compile(r'([^\.])(\.)([\]\)}>"\'' "»”’ " r"]*)\s*$", re.U), r"\1 \2 \3 "),
(re.compile(r"([:,])([^\d])"), r" \1 \2"),
(re.compile(r"([:,])$"), r" \1 "),
(
re.compile(r"\.{2,}", re.U),
r" \g<0> ",
), # See https://github.com/nltk/nltk/pull/2322
(re.compile(r"[;@#$%&]"), r" \g<0> "),
(
re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'),
r"\1 \2\3 ",
), # Handles the final period.
(re.compile(r"[?!]"), r" \g<0> "),
(re.compile(r"([^'])' "), r"\1 ' "),
(
re.compile(r"[*]", re.U),
r" \g<0> ",
), # See https://github.com/nltk/nltk/pull/2322
]
# Pads parentheses
PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ")
# Optionally: Convert parentheses, brackets and converts them to PTB symbols.
# CONVERT_PARENTHESES = [
# (re.compile(r"\("), "-LRB-"),
# (re.compile(r"\)"), "-RRB-"),
# (re.compile(r"\["), "-LSB-"),
# (re.compile(r"\]"), "-RSB-"),
# (re.compile(r"\{"), "-LCB-"),
# (re.compile(r"\}"), "-RCB-"),
# ]
DOUBLE_DASHES = (re.compile(r"--"), r" -- ")
# List of contractions adapted from Robert MacIntyre's tokenizer.
# _contractions = MacIntyreContractions()
# CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2))
# CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3))
def tokenize(
self, text: str
) -> List[str]:
r"""Return a tokenized copy of `text`.
>>> from nltk.tokenize import NLTKWordTokenizer
>>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York. Please buy me\ntwo of them.\nThanks.'''
>>> NLTKWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36',
'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
'of', 'them.', 'Thanks', '.']
>>> NLTKWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36',
'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
'of', 'them.', 'Thanks', '.']
:param text: A string with a sentence or sentences.
:type text: str
:param convert_parentheses: if True, replace parentheses to PTB symbols,
e.g. `(` to `-LRB-`. Defaults to False.
:type convert_parentheses: bool, optional
:param return_str: If True, return tokens as space-separated string,
defaults to False.
:type return_str: bool, optional
:return: List of tokens from `text`.
:rtype: List[str]
"""
for regexp, substitution in self.STARTING_QUOTES:
text = regexp.sub(substitution, text)
for regexp, substitution in self.PUNCTUATION:
text = regexp.sub(substitution, text)
# Handles parentheses.
regexp, substitution = self.PARENS_BRACKETS
text = regexp.sub(substitution, text)
# Handles double dash.
regexp, substitution = self.DOUBLE_DASHES
text = regexp.sub(substitution, text)
# add extra space to make things easier
text = " " + text + " "
for regexp, substitution in self.ENDING_QUOTES:
text = regexp.sub(substitution, text)
return text.split()
def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]:
r"""
Returns the spans of the tokens in ``text``.
Uses the post-hoc nltk.tokens.align_tokens to return the offset spans.
>>> from nltk.tokenize import NLTKWordTokenizer
>>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).'''
>>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23),
... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38),
... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59),
... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)]
>>> list(NLTKWordTokenizer().span_tokenize(s)) == expected
True
>>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in',
... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')',
... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.']
>>> [s[start:end] for start, end in NLTKWordTokenizer().span_tokenize(s)] == expected
True
:param text: A string with a sentence or sentences.
:type text: str
:yield: Tuple[int, int]
"""
raw_tokens = self.tokenize(text)
# Convert converted quotes back to original double quotes
# Do this only if original text contains double quote(s) or double
# single-quotes (because '' might be transformed to `` if it is
# treated as starting quotes).
# if ('"' in text) or ("''" in text):
# # Find double quotes and converted quotes
# matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)]
# # Replace converted quotes back to double quotes
# tokens = [
# matched.pop(0) if tok in ['"', "``", "''"] else tok
# for tok in raw_tokens
# ]
# else:
tokens = raw_tokens
yield from align_tokens(tokens, text)