Spaces:
Sleeping
Sleeping
update for Sintetico Models
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ import stone
|
|
19 |
import os
|
20 |
import spaces
|
21 |
|
22 |
-
access_token = os.getenv("AccessTokenSD3")
|
23 |
|
24 |
|
25 |
from huggingface_hub import login
|
@@ -28,71 +28,34 @@ login(token = access_token)
|
|
28 |
|
29 |
# Define model initialization functions
|
30 |
def load_model(model_name):
|
31 |
-
if model_name == "
|
32 |
-
pipeline =
|
33 |
-
|
34 |
-
torch_dtype=torch.float16,
|
35 |
-
variant="fp16"
|
|
|
36 |
).to("cuda")
|
37 |
-
elif model_name == "
|
38 |
-
pipeline =
|
39 |
-
|
40 |
-
torch_dtype=torch.float16
|
41 |
-
|
42 |
-
|
43 |
-
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
44 |
-
ckpt = "sdxl_lightning_4step_unet.safetensors"
|
45 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
46 |
-
unet.load_state_dict(load_file(hf_hub_download(model_name, ckpt), device="cuda"))
|
47 |
-
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
48 |
-
base,
|
49 |
-
unet=unet,
|
50 |
-
torch_dtype=torch.float16,
|
51 |
-
variant="fp16"
|
52 |
-
).to("cuda")
|
53 |
-
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
|
54 |
-
elif model_name == "segmind/SSD-1B":
|
55 |
-
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
56 |
-
model_name,
|
57 |
-
torch_dtype=torch.float16,
|
58 |
-
use_safetensors=True,
|
59 |
-
variant="fp16"
|
60 |
-
).to("cuda")
|
61 |
-
elif model_name == "stabilityai/stable-diffusion-3-medium-diffusers":
|
62 |
-
pipeline = StableDiffusion3Pipeline.from_pretrained(
|
63 |
-
model_name,
|
64 |
-
torch_dtype=torch.float16
|
65 |
-
).to("cuda")
|
66 |
-
elif model_name == "stabilityai/stable-diffusion-2":
|
67 |
-
scheduler = EulerDiscreteScheduler.from_pretrained(model_name, subfolder="scheduler")
|
68 |
-
pipeline = StableDiffusionPipeline.from_pretrained(
|
69 |
-
model_name,
|
70 |
-
scheduler=scheduler,
|
71 |
-
torch_dtype=torch.float16
|
72 |
).to("cuda")
|
73 |
else:
|
74 |
raise ValueError("Unknown model name")
|
75 |
return pipeline
|
76 |
|
77 |
# Initialize the default model
|
78 |
-
default_model = "
|
79 |
pipeline_text2image = load_model(default_model)
|
80 |
|
81 |
@spaces.GPU
|
82 |
def getimgen(prompt, model_name):
|
83 |
-
if model_name == "
|
84 |
-
return pipeline_text2image(prompt=prompt, guidance_scale=
|
85 |
-
elif model_name == "
|
86 |
-
return pipeline_text2image(prompt).images[0]
|
87 |
-
elif model_name == "ByteDance/SDXL-Lightning":
|
88 |
-
return pipeline_text2image(prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
89 |
-
elif model_name == "segmind/SSD-1B":
|
90 |
-
neg_prompt = "ugly, blurry, poor quality"
|
91 |
-
return pipeline_text2image(prompt=prompt, negative_prompt=neg_prompt).images[0]
|
92 |
-
elif model_name == "stabilityai/stable-diffusion-3-medium-diffusers":
|
93 |
-
return pipeline_text2image(prompt=prompt, negative_prompt="", num_inference_steps=28, guidance_scale=7.0).images[0]
|
94 |
-
elif model_name == "stabilityai/stable-diffusion-2":
|
95 |
-
return pipeline_text2image(prompt=prompt).images[0]
|
96 |
|
97 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
98 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
@@ -181,16 +144,12 @@ This demo provides an insightful look into how current text-to-image models hand
|
|
181 |
model_dropdown = gr.Dropdown(
|
182 |
label="Choose a model",
|
183 |
choices=[
|
184 |
-
"
|
185 |
-
"
|
186 |
-
"ByteDance/SDXL-Lightning",
|
187 |
-
"stabilityai/stable-diffusion-2",
|
188 |
-
"runwayml/stable-diffusion-v1-5",
|
189 |
-
"segmind/SSD-1B"
|
190 |
],
|
191 |
value=default_model
|
192 |
)
|
193 |
-
prompt = gr.Textbox(label="Enter the Prompt", value = "photo of a
|
194 |
gallery = gr.Gallery(
|
195 |
label="Generated images",
|
196 |
show_label=False,
|
|
|
19 |
import os
|
20 |
import spaces
|
21 |
|
22 |
+
# access_token = os.getenv("AccessTokenSD3")
|
23 |
|
24 |
|
25 |
from huggingface_hub import login
|
|
|
28 |
|
29 |
# Define model initialization functions
|
30 |
def load_model(model_name):
|
31 |
+
if model_name == "sinteticoXL":
|
32 |
+
pipeline = StableDiffusionXLPipeline.from_single_file(
|
33 |
+
"https://huggingface.co/lucianosb/sinteticoXL-models/blob/main/sinteticoXL_v1dot2.safetensors",
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
variant="fp16",
|
36 |
+
use_safetensors=True,
|
37 |
).to("cuda")
|
38 |
+
elif model_name == "sinteticoXL_Prude":
|
39 |
+
pipeline = StableDiffusionXLPipeline.from_single_file(
|
40 |
+
"https://huggingface.co/lucianosb/sinteticoXL-models/blob/main/sinteticoXL_prude_v1dot2.safetensors",
|
41 |
+
torch_dtype=torch.float16,
|
42 |
+
variant="fp16",
|
43 |
+
use_safetensors=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
).to("cuda")
|
45 |
else:
|
46 |
raise ValueError("Unknown model name")
|
47 |
return pipeline
|
48 |
|
49 |
# Initialize the default model
|
50 |
+
default_model = "sinteticoXL"
|
51 |
pipeline_text2image = load_model(default_model)
|
52 |
|
53 |
@spaces.GPU
|
54 |
def getimgen(prompt, model_name):
|
55 |
+
if model_name == "sinteticoXL":
|
56 |
+
return pipeline_text2image(prompt=prompt, guidance_scale=6.0, num_inference_steps=20).images[0]
|
57 |
+
elif model_name == "sinteticoXL_Prude":
|
58 |
+
return pipeline_text2image(prompt=prompt, guidance_scale=6.0, num_inference_steps=20).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
61 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
|
|
144 |
model_dropdown = gr.Dropdown(
|
145 |
label="Choose a model",
|
146 |
choices=[
|
147 |
+
"sinteticoXL",
|
148 |
+
"sinteticoXL_Prude"
|
|
|
|
|
|
|
|
|
149 |
],
|
150 |
value=default_model
|
151 |
)
|
152 |
+
prompt = gr.Textbox(label="Enter the Prompt", value = "photo of a beautiful Brazilian woman, high quality, good lighting")
|
153 |
gallery = gr.Gallery(
|
154 |
label="Generated images",
|
155 |
show_label=False,
|