Spaces:
Runtime error
Runtime error
File size: 1,202 Bytes
0b1df81 cda11d3 cf514d7 0b1df81 cda11d3 0b1df81 cf514d7 cda11d3 cf514d7 0b1df81 cf514d7 0b1df81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from fastapi import FastAPI
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
app = FastAPI()
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto")
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
@app.post("/predict")
async def predict(messages: list):
# Processamento e inferência
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to("cpu") # Altere para "cuda" se tiver GPU disponível
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
return {"response": output_text} |