Spaces:
Runtime error
Runtime error
File size: 10,563 Bytes
058ceb7 9ba9912 058ceb7 1bdde8d 058ceb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import streamlit as st
import streamlit.components.v1 as components
import dnnlib
import legacy
import pickle
import pandas as pd
import numpy as np
from pyvis.network import Network
import random
from sklearn.metrics.pairwise import cosine_similarity
from matplotlib.backends.backend_agg import RendererAgg
from backend.disentangle_concepts import *
_lock = RendererAgg.lock
HIGHTLIGHT_COLOR = '#e7bcc5'
st.set_page_config(layout='wide')
st.title('Comparison among concept vectors')
st.write('> **How do the concept vectors relate to each other?**')
st.write('> **What is their join impact on the image?**')
st.write("""Description to write""")
annotations_file = './data/vase_annotated_files/seeds0000-20000.pkl'
with open(annotations_file, 'rb') as f:
annotations = pickle.load(f)
if 'image_id' not in st.session_state:
st.session_state.image_id = 0
if 'concept_ids' not in st.session_state:
st.session_state.concept_ids = ['Provenance ADRIA']
if 'space_id' not in st.session_state:
st.session_state.space_id = 'Z'
if 'type_col' not in st.session_state:
st.session_state.type_col = 'Provenance'
# def on_change_random_input():
# st.session_state.image_id = st.session_state.image_id
# ----------------------------- INPUT ----------------------------------
st.header('Input')
input_col_1, input_col_2, input_col_3 = st.columns(3)
# --------------------------- INPUT column 1 ---------------------------
with input_col_1:
with st.form('text_form'):
# image_id = st.number_input('Image ID: ', format='%d', step=1)
st.write('**Choose two options to disentangle**')
type_col = st.selectbox('Concept category:', tuple(['Provenance', 'Shape Name', 'Fabric', 'Technique']))
ann_df = pd.read_csv(f'./data/vase_annotated_files/sim_{type_col}_seeds0000-20000.csv')
labels = list(ann_df.columns)
labels.remove('ID')
labels.remove('Unnamed: 0')
concept_ids = st.multiselect('Concepts:', tuple(labels), default=[labels[2], labels[3]])
st.write('**Choose a latent space to disentangle**')
# chosen_text_id_input = st.empty()
# concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
space_id = st.selectbox('Space:', tuple(['Z', 'W']))
choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle')
if choose_text_button:
st.session_state.concept_ids = list(concept_ids)
space_id = str(space_id)
st.session_state.space_id = space_id
st.session_state.type_col = type_col
# st.write(image_id, st.session_state.image_id)
# ---------------------------- SET UP OUTPUT ------------------------------
epsilon_container = st.empty()
st.header('Output')
st.subheader('Concept vector')
# perform attack container
# header_col_1, header_col_2, header_col_3, header_col_4, header_col_5 = st.columns([1,1,1,1,1])
# output_col_1, output_col_2, output_col_3, output_col_4, output_col_5 = st.columns([1,1,1,1,1])
header_col_1, header_col_2 = st.columns([1,1])
output_col_1, output_col_2 = st.columns([1,1])
st.subheader('Derivations along the concept vector')
# prediction error container
error_container = st.empty()
smoothgrad_header_container = st.empty()
# smoothgrad container
smooth_head_1, smooth_head_2, smooth_head_3, smooth_head_4, smooth_head_5 = st.columns([1,1,1,1,1])
smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgrad_col_5 = st.columns([1,1,1,1,1])
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
with output_col_1:
vectors, nodes_in_common, performances = get_concepts_vectors(concept_ids, annotations, ann_df, latent_space=space_id)
header_col_1.write(f'Concepts {", ".join(concept_ids)} - Latent space {space_id} - Relevant nodes in common: {nodes_in_common} - Performance of the concept vectors: {performances}')# - Nodes {",".join(list(imp_nodes))}')
edges = []
for i in range(len(concept_ids)):
for j in range(len(concept_ids)):
if i != j:
print(f'Similarity between {concept_ids[i]} and {concept_ids[j]}')
similarity = cosine_similarity(vectors[i,:].reshape(1, -1), vectors[j,:].reshape(1, -1))
print(np.round(similarity[0][0], 3))
edges.append((concept_ids[i], concept_ids[j], np.round(similarity[0][0], 3)))
net = Network(height="750px", width="100%",)
for e in edges:
src = e[0]
dst = e[1]
w = e[2]
net.add_node(src, src, title=src)
net.add_node(dst, dst, title=dst)
net.add_edge(src, dst, value=w, title=src + ' to ' + dst + ' similarity ' +str(w))
# Generate network with specific layout settings
net.repulsion(
node_distance=420,
central_gravity=0.33,
spring_length=110,
spring_strength=0.10,
damping=0.95
)
# Save and read graph as HTML file (on Streamlit Sharing)
try:
path = '/tmp'
net.save_graph(f'{path}/pyvis_graph.html')
HtmlFile = open(f'{path}/pyvis_graph.html', 'r', encoding='utf-8')
# Save and read graph as HTML file (locally)
except:
path = '/html_files'
net.save_graph(f'{path}/pyvis_graph.html')
HtmlFile = open(f'{path}/pyvis_graph.html', 'r', encoding='utf-8')
# Load HTML file in HTML component for display on Streamlit page
components.html(HtmlFile.read(), height=435)
with output_col_2:
with open('data/CLIP_vecs_vases.pkl', 'rb') as f:
vectors_CLIP = pickle.load(f)
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
#st.write('Concept vector', separation_vector)
header_col_2.write(f'Concepts {", ".join(concept_ids)} - Latent space CLIP')# - Nodes {",".join(list(imp_nodes))}')
edges_clip = []
for c1 in concept_ids:
for c2 in concept_ids:
if c1 != c2:
print(f'Similarity between {c1} and {c2}')
similarity = cosine_similarity(vectors_CLIP[st.session_state.type_col + ' ' + c1].reshape(1, -1), vectors_CLIP[st.session_state.type_col + ' ' + c2].reshape(1, -1))
print(np.round(similarity[0][0], 3))
edges_clip.append((c1, c2, np.round(float(np.round(similarity[0][0], 3)), 3)))
net_clip = Network(height="750px", width="100%",)
for e in edges_clip:
src = e[0]
dst = e[1]
w = e[2]
net_clip.add_node(src, src, title=src)
net_clip.add_node(dst, dst, title=dst)
net_clip.add_edge(src, dst, value=w, title=src + ' to ' + dst + ' similarity ' +str(w))
# Generate network with specific layout settings
net_clip.repulsion(
node_distance=420,
central_gravity=0.33,
spring_length=110,
spring_strength=0.10,
damping=0.95
)
# Save and read graph as HTML file (on Streamlit Sharing)
try:
path = '/tmp'
net_clip.save_graph(f'{path}/pyvis_graph_clip.html')
HtmlFile = open(f'{path}/pyvis_graph_clip.html', 'r', encoding='utf-8')
# Save and read graph as HTML file (locally)
except:
path = '/html_files'
net_clip.save_graph(f'{path}/pyvis_graph_clip.html')
HtmlFile = open(f'{path}/pyvis_graph_clip.html', 'r', encoding='utf-8')
# Load HTML file in HTML component for display on Streamlit page
components.html(HtmlFile.read(), height=435)
# ----------------------------- INPUT column 2 & 3 ----------------------------
with input_col_2:
with st.form('image_form'):
# image_id = st.number_input('Image ID: ', format='%d', step=1)
st.write('**Choose or generate a random image to test the disentanglement**')
chosen_image_id_input = st.empty()
image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
choose_image_button = st.form_submit_button('Choose the defined image')
random_id = st.form_submit_button('Generate a random image')
if random_id:
image_id = random.randint(0, 50000)
st.session_state.image_id = image_id
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
if choose_image_button:
image_id = int(image_id)
st.session_state.image_id = int(image_id)
# st.write(image_id, st.session_state.image_id)
with input_col_3:
with st.form('Variate along the disentangled concepts'):
st.write('**Set range of change**')
chosen_epsilon_input = st.empty()
epsilon = chosen_epsilon_input.number_input('Epsilon:', min_value=1, step=1)
epsilon_button = st.form_submit_button('Choose the defined epsilon')
# # ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------
with dnnlib.util.open_url('./data/vase_model_files/network-snapshot-003800.pkl') as f:
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore
if st.session_state.space_id == 'Z':
original_image_vec = annotations['z_vectors'][st.session_state.image_id]
else:
original_image_vec = annotations['w_vectors'][st.session_state.image_id]
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
# input_image = original_image_dict['image']
# input_label = original_image_dict['label']
# input_id = original_image_dict['id']
with smoothgrad_col_3:
st.image(img)
smooth_head_3.write(f'Base image')
images, lambdas = generate_joint_effect(model, original_image_vec, vectors, min_epsilon=-(int(epsilon)), max_epsilon=int(epsilon), latent_space=st.session_state.space_id)
with smoothgrad_col_1:
st.image(images[0])
smooth_head_1.write(f'Change of {np.round(lambdas[0], 2)}')
with smoothgrad_col_2:
st.image(images[1])
smooth_head_2.write(f'Change of {np.round(lambdas[1], 2)}')
with smoothgrad_col_4:
st.image(images[3])
smooth_head_4.write(f'Change of {np.round(lambdas[3], 2)}')
with smoothgrad_col_5:
st.image(images[4])
smooth_head_5.write(f'Change of {np.round(lambdas[4], 2)}')
|