Spaces:
Runtime error
Runtime error
File size: 8,196 Bytes
4347fc3 d47f0a9 a16f7a6 0f9f66b 4347fc3 8c184f4 4347fc3 7a3450e 4347fc3 7a3450e 4347fc3 7a3450e 4347fc3 3f788ef 4347fc3 2a4bd0a 3f788ef 4347fc3 7a3450e 4347fc3 6dee263 e6dc87e 3f788ef c185595 4347fc3 7a3450e dc026d8 7a3450e 3f788ef 7a3450e 4347fc3 7a3450e 4347fc3 1904fbf 4347fc3 3f788ef 4347fc3 266a83c 5ad9951 7764300 8e430df 4347fc3 3f788ef 4347fc3 7a3450e 3f788ef 4347fc3 8a2c29c 4347fc3 60af39a ef61173 60af39a ef61173 60af39a ef61173 60af39a 4347fc3 3b15df8 a16f7a6 3f788ef 4347fc3 3b15df8 266a83c 3b15df8 4347fc3 60af39a 4347fc3 266a83c 4347fc3 266a83c 9bb9ba9 4347fc3 266a83c 4347fc3 266a83c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import streamlit as st
import pickle
import pandas as pd
import numpy as np
import random
import torch
from matplotlib.backends.backend_agg import RendererAgg
from backend.disentangle_concepts import *
import torch_utils
import dnnlib
import legacy
_lock = RendererAgg.lock
st.set_page_config(layout='wide')
BACKGROUND_COLOR = '#bcd0e7'
SECONDARY_COLOR = '#bce7db'
st.title('Disentanglement studies')
st.write('> **What concepts can be disentangled in the latent spae of a model?**')
st.write("""Explanation on the functionalities to come.""")
instruction_text = """Instruction to input:
1. Choosing concept:
2. Choosing image: Users can choose a specific image by entering **Image ID** and hit the _Choose the defined image_ button or can generate an image randomly by hitting the _Generate a random image_ button.
3. Choosing epsilon: **Epsilon** is the lambda amount of translation along the disentangled concept axis. A negative epsilon changes the image in the direction of the concept, a positive one pushes the image away from the concept.
"""
st.write("To use the functionality below, users need to input the **concept** to disentangle, an **image** id and the **epsilon** of variation along the disentangled axis.")
with st.expander("See more instruction", expanded=False):
st.write(instruction_text)
annotations_file = './data/annotated_files/seeds0000-50000.pkl'
with open(annotations_file, 'rb') as f:
annotations = pickle.load(f)
ann_df = pd.read_csv('./data/annotated_files/sim_seeds0000-50000.csv')
concepts = './data/concepts.txt'
with open(concepts) as f:
labels = [line.strip() for line in f.readlines()]
if 'image_id' not in st.session_state:
st.session_state.image_id = 0
if 'concept_id' not in st.session_state:
st.session_state.concept_id = 'Abstract'
if 'space_id' not in st.session_state:
st.session_state.space_id = 'Z'
# def on_change_random_input():
# st.session_state.image_id = st.session_state.image_id
# ----------------------------- INPUT ----------------------------------
st.header('Input')
input_col_1, input_col_2, input_col_3 = st.columns(3)
# --------------------------- INPUT column 1 ---------------------------
with input_col_1:
with st.form('text_form'):
# image_id = st.number_input('Image ID: ', format='%d', step=1)
st.write('**Choose a concept to disentangle**')
# chosen_text_id_input = st.empty()
# concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
concept_id = st.selectbox('Concept:', tuple(labels))
st.write('**Choose a latent space to disentangle**')
# chosen_text_id_input = st.empty()
# concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
space_id = st.selectbox('Space:', tuple(['Z', 'W']))
choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle')
# random_text = st.form_submit_button('Select a random concept')
# if random_text:
# concept_id = random.choice(labels)
# st.session_state.concept_id = concept_id
# chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
if choose_text_button:
concept_id = str(concept_id)
st.session_state.concept_id = concept_id
space_id = str(space_id)
st.session_state.space_id = space_id
# st.write(image_id, st.session_state.image_id)
# ---------------------------- SET UP OUTPUT ------------------------------
epsilon_container = st.empty()
st.header('Output')
st.subheader('Concept vector')
# perform attack container
# header_col_1, header_col_2, header_col_3, header_col_4, header_col_5 = st.columns([1,1,1,1,1])
# output_col_1, output_col_2, output_col_3, output_col_4, output_col_5 = st.columns([1,1,1,1,1])
header_col_1, header_col_2 = st.columns([5,1])
output_col_1, output_col_2 = st.columns([5,1])
st.subheader('Derivations along the concept vector')
# prediction error container
error_container = st.empty()
smoothgrad_header_container = st.empty()
# smoothgrad container
smooth_head_1, smooth_head_2, smooth_head_3, smooth_head_4, smooth_head_5 = st.columns([1,1,1,1,1])
smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgrad_col_5 = st.columns([1,1,1,1,1])
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
with output_col_1:
separation_vector, number_important_features, imp_nodes, performance = get_separation_space(concept_id, annotations, ann_df, latent_space=st.session_state.space_id)
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
st.write('Concept vector', separation_vector)
header_col_1.write(f'Concept {concept_id} - Space {st.session_state.space_id} - Number of relevant nodes: {number_important_features} - Val classification performance: {performance}')# - Nodes {",".join(list(imp_nodes))}')
# ----------------------------- INPUT column 2 & 3 ----------------------------
with input_col_2:
with st.form('image_form'):
# image_id = st.number_input('Image ID: ', format='%d', step=1)
st.write('**Choose or generate a random image to test the disentanglement**')
chosen_image_id_input = st.empty()
image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
choose_image_button = st.form_submit_button('Choose the defined image')
random_id = st.form_submit_button('Generate a random image')
if random_id:
image_id = random.randint(0, 50000)
st.session_state.image_id = image_id
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
if choose_image_button:
image_id = int(image_id)
st.session_state.image_id = int(image_id)
# st.write(image_id, st.session_state.image_id)
with input_col_3:
with st.form('Variate along the disentangled concept'):
st.write('**Set range of change**')
chosen_epsilon_input = st.empty()
epsilon = chosen_epsilon_input.number_input('Lambda:', min_value=1, step=1)
epsilon_button = st.form_submit_button('Choose the defined lambda')
st.write('**Select hierarchical levels to manipulate**')
layers = st.multiselect('Layers:', tuple(range(14)))
if len(layers) == 0:
layers = None
print(layers)
layers_button = st.form_submit_button('Choose the defined layers')
# ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------
#model = torch.load('./data/model_files/pytorch_model.bin', map_location=torch.device('cpu'))
with dnnlib.util.open_url('./data/model_files/network-snapshot-010600.pkl') as f:
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore
if st.session_state.space_id == 'Z':
original_image_vec = annotations['z_vectors'][st.session_state.image_id]
else:
original_image_vec = annotations['w_vectors'][st.session_state.image_id]
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
# input_image = original_image_dict['image']
# input_label = original_image_dict['label']
# input_id = original_image_dict['id']
with smoothgrad_col_3:
st.image(img)
smooth_head_3.write(f'Base image')
images, lambdas = regenerate_images(model, original_image_vec, separation_vector, min_epsilon=-(int(epsilon)), max_epsilon=int(epsilon), latent_space=st.session_state.space_id, layers=layers)
with smoothgrad_col_1:
st.image(images[0])
smooth_head_1.write(f'Change of {np.round(lambdas[0], 2)}')
with smoothgrad_col_2:
st.image(images[1])
smooth_head_2.write(f'Change of {np.round(lambdas[1], 2)}')
with smoothgrad_col_4:
st.image(images[3])
smooth_head_4.write(f'Change of {np.round(lambdas[3], 2)}')
with smoothgrad_col_5:
st.image(images[4])
smooth_head_5.write(f'Change of {np.round(lambdas[4], 2)}')
|