Ludovica Schaerf
Duplicate from taquynhnga/CNNs-interpretation-visualization
fcc16aa
raw
history blame
1.33 kB
import json
import pickle
import numpy as np
from collections import OrderedDict
def load_pickle(filename):
with open(filename, 'rb') as file:
data = pickle.load(file)
return data
def save_pickle_to_json(filename):
ordered_dict = load_pickle(filename)
json_obj = json.dumps(ordered_dict, cls=NumpyEncoder)
with open(filename.replace('.pkl', '.json'), 'w') as f:
f.write(json_obj)
def load_json(filename):
with open(filename, 'r') as read_file:
loaded_dict = json.loads(read_file.read())
loaded_dict = OrderedDict(loaded_dict)
for k, v in loaded_dict.items():
if type(v) == list:
loaded_dict[k] = np.asarray(v)
else:
for k_, v_ in v.items():
v[k_] = np.asarray(v_)
return loaded_dict
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
# save_pickle_to_json('data/layer_infos/convnext_layer_infos.pkl')
# save_pickle_to_json('data/layer_infos/resnet_layer_infos.pkl')
# save_pickle_to_json('data/layer_infos/mobilenet_layer_infos.pkl')
# file = load_json('data/layer_infos/convnext_layer_infos.json')
# print(type(file))
# print(type(file['embeddings.patch_embeddings']))