Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pickle | |
import pandas as pd | |
import numpy as np | |
import random | |
import torch | |
from matplotlib.backends.backend_agg import RendererAgg | |
from backend.disentangle_concepts import * | |
import torch_utils | |
import dnnlib | |
import legacy | |
_lock = RendererAgg.lock | |
st.set_page_config(layout='wide') | |
BACKGROUND_COLOR = '#bcd0e7' | |
SECONDARY_COLOR = '#bce7db' | |
st.title('Disentanglement studies on the Oxford Vases Dataset') | |
st.markdown( | |
""" | |
This is a demo of the Disentanglement studies on the [Oxford Vases Dataset](https://www.robots.ox.ac.uk/~vgg/data/oxbuildings/). | |
""", | |
unsafe_allow_html=False,) | |
annotations_file = './data/vase_annotated_files/seeds0000-20000.pkl' | |
with open(annotations_file, 'rb') as f: | |
annotations = pickle.load(f) | |
ann_df = pd.read_csv('./data/vase_annotated_files/sim_Shape Name_seeds0000-20000.csv') | |
labels = ann_df.columns | |
if 'image_id' not in st.session_state: | |
st.session_state.image_id = 0 | |
if 'concept_ids' not in st.session_state: | |
st.session_state.concept_ids =['AMPHORA'] | |
if 'space_id' not in st.session_state: | |
st.session_state.space_id = 'W' | |
# def on_change_random_input(): | |
# st.session_state.image_id = st.session_state.image_id | |
# ----------------------------- INPUT ---------------------------------- | |
st.header('Input') | |
input_col_1, input_col_2, input_col_3 = st.columns(3) | |
# --------------------------- INPUT column 1 --------------------------- | |
with input_col_1: | |
with st.form('text_form'): | |
# image_id = st.number_input('Image ID: ', format='%d', step=1) | |
st.write('**Choose two options to disentangle**') | |
concept_ids = st.multiselect('Concepts:', tuple(labels), max_selections=2, default=['AMPHORA', 'CHALICE']) | |
st.write('**Choose a latent space to disentangle**') | |
space_id = st.selectbox('Space:', tuple(['W', 'Z'])) | |
choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle') | |
if choose_text_button: | |
concept_ids = list(concept_ids) | |
st.session_state.concept_ids = concept_ids | |
space_id = str(space_id) | |
st.session_state.space_id = space_id | |
# st.write(image_id, st.session_state.image_id) | |
# ---------------------------- SET UP OUTPUT ------------------------------ | |
epsilon_container = st.empty() | |
st.header('Output') | |
st.subheader('Concept vector') | |
# perform attack container | |
# header_col_1, header_col_2, header_col_3, header_col_4, header_col_5 = st.columns([1,1,1,1,1]) | |
# output_col_1, output_col_2, output_col_3, output_col_4, output_col_5 = st.columns([1,1,1,1,1]) | |
header_col_1, header_col_2 = st.columns([5,1]) | |
output_col_1, output_col_2 = st.columns([5,1]) | |
st.subheader('Derivations along the concept vector') | |
# prediction error container | |
error_container = st.empty() | |
smoothgrad_header_container = st.empty() | |
# smoothgrad container | |
smooth_head_1, smooth_head_2, smooth_head_3, smooth_head_4, smooth_head_5 = st.columns([1,1,1,1,1]) | |
smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgrad_col_5 = st.columns([1,1,1,1,1]) | |
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------ | |
with output_col_1: | |
separation_vector, number_important_features, imp_nodes, performance = get_separation_space(concept_ids, annotations, ann_df, latent_space=st.session_state.space_id, samples=100) | |
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence') | |
st.write('Concept vector', separation_vector) | |
header_col_1.write(f'Concept {st.session_state.concept_ids} - Space {st.session_state.space_id} - Number of relevant nodes: {number_important_features} - Val classification performance: {performance}')# - Nodes {",".join(list(imp_nodes))}') | |
# ----------------------------- INPUT column 2 & 3 ---------------------------- | |
with input_col_2: | |
with st.form('image_form'): | |
# image_id = st.number_input('Image ID: ', format='%d', step=1) | |
st.write('**Choose or generate a random image to test the disentanglement**') | |
chosen_image_id_input = st.empty() | |
image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id) | |
choose_image_button = st.form_submit_button('Choose the defined image') | |
random_id = st.form_submit_button('Generate a random image') | |
if random_id: | |
image_id = random.randint(0, 20000) | |
st.session_state.image_id = image_id | |
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id) | |
if choose_image_button: | |
image_id = int(image_id) | |
st.session_state.image_id = int(image_id) | |
# st.write(image_id, st.session_state.image_id) | |
with input_col_3: | |
with st.form('Variate along the disentangled concept'): | |
st.write('**Set range of change**') | |
chosen_epsilon_input = st.empty() | |
epsilon = chosen_epsilon_input.number_input('Lambda:', min_value=1, step=1) | |
epsilon_button = st.form_submit_button('Choose the defined lambda') | |
st.write('**Select hierarchical levels to manipulate**') | |
layers = st.multiselect('Layers:', tuple(range(14))) | |
if len(layers) == 0: | |
layers = None | |
print(layers) | |
layers_button = st.form_submit_button('Choose the defined layers') | |
# ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------ | |
#model = torch.load('./data/model_files/pytorch_model.bin', map_location=torch.device('cpu')) | |
with dnnlib.util.open_url('./data/vase_model_files/network-snapshot-003800.pkl') as f: | |
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore | |
if st.session_state.space_id == 'Z': | |
original_image_vec = annotations['z_vectors'][st.session_state.image_id] | |
else: | |
original_image_vec = annotations['w_vectors'][st.session_state.image_id] | |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id) | |
print(ann_df.iloc[st.session_state.image_id, list(ann_df.columns) - 'ID']) | |
top_pred = ann_df.iloc[st.session_state.image_id, list(ann_df.columns) - 'ID'].idxmax() | |
# input_image = original_image_dict['image'] | |
# input_label = original_image_dict['label'] | |
# input_id = original_image_dict['id'] | |
with smoothgrad_col_3: | |
st.image(img) | |
smooth_head_3.write(f'Base image, predicted as {top_pred}') | |
images, lambdas = regenerate_images(model, original_image_vec, separation_vector, min_epsilon=-(int(epsilon)), max_epsilon=int(epsilon), latent_space=st.session_state.space_id, layers=layers) | |
with smoothgrad_col_1: | |
st.image(images[0]) | |
smooth_head_1.write(f'Change of {np.round(lambdas[0], 2)}') | |
with smoothgrad_col_2: | |
st.image(images[1]) | |
smooth_head_2.write(f'Change of {np.round(lambdas[1], 2)}') | |
with smoothgrad_col_4: | |
st.image(images[3]) | |
smooth_head_4.write(f'Change of {np.round(lambdas[3], 2)}') | |
with smoothgrad_col_5: | |
st.image(images[4]) | |
smooth_head_5.write(f'Change of {np.round(lambdas[4], 2)}') | |